DAY03|203.移除链表元素、707.设计链表、206.反转链表

news2024/11/26 10:41:48

203.移除链表元素、707.设计链表、206.反转链表

  • LeetCode 203.移除链表元素
  • LeetCode 707.设计链表
  • LeetCode 206.反转链表
    • 双指针法
    • 递归法

LeetCode 203.移除链表元素

注意,在dummy上操作,返回也返回dummy->next
如果头铁想返回head,那样会发现head没有变化
因为实际上dummy->next和head并不是同一块地址空间的内容
函数里的操作改变的都是新的dummy节点上进行的
原始链表的连接关系没有改变

    ListNode* removeElements(ListNode* head, int val) {
        ListNode* dummy = new ListNode(0);
        dummy->next = head;
        ListNode* pre= dummy;
        ListNode* cur = dummy->next;
        while(cur != NULL){
            if(cur->val == val){
                pre->next = cur->next;
                cur = pre->next;
            }else{
                //这个else是后面补的,原先没写else出了一堆问题,还又增加了if分支
                cur=cur->next;
                pre=pre->next;
            }
        }
        return dummy->next;
    }

因为一个else卡了半天查呀查呀查
是我没有想到的
如果不写else问题很大,那样这里要加一个判断,再判断是否cur为空
这还不够,不写else如果上面if内部执行了,就不能再往下推进pre和cur,这也是为啥要写else
不是很难想的逻辑,但是第一遍写代码甚至好几遍检查的时候都没有查出来这个点,思维还是混乱
这道题21年也写过通过了
ok接下来看看卡哥的

链表操作中,可以使用原链表来直接进行删除操作,也可以设置一个虚拟头结点再进行删除操作,接下来看一看哪种方式更方便。
21年的代码相当于前者,今天的代码相当于后者

卡哥说:还要说明一下,就算使用C++来做leetcode,如果移除一个节点之后,没有手动在内存中删除这个节点,leetcode依然也是可以通过的,只不过,内存使用的空间大一些而已,但建议依然要养成手动清理内存的习惯。
这个我没有写

那么因为单链表的特殊性,只能指向下一个节点,刚刚删除的是链表的中第二个,和第四个节点,那么如果删除的是头结点又该怎么办呢?
这里就涉及如下链表操作的两种方式:
(1)直接使用原来的链表来进行删除操作。

 ListNode* removeElements(ListNode* head, int val) {
        // 删除头结点
        while (head != NULL && head->val == val) { // 注意这里不是if
            ListNode* tmp = head;
            head = head->next;
            delete tmp;}
        // 删除非头结点
        ListNode* cur = head;
        while (cur != NULL && cur->next!= NULL) {
            if (cur->next->val == val) {
                ListNode* tmp = cur->next;
                cur->next = cur->next->next;
                delete tmp;
            } else {cur = cur->next;}}
        return head;
    }

(2)设置一个虚拟头结点在进行删除操作。

ListNode* removeElements(ListNode* head, int val) {
        ListNode* dummyHead = new ListNode(0); // 设置一个虚拟头结点
        dummyHead->next = head; // 将虚拟头结点指向head,这样方便后面做删除操作
        ListNode* cur = dummyHead;
        while (cur->next != NULL) {
            if(cur->next->val == val) {
                ListNode* tmp = cur->next;
                cur->next = cur->next->next;
                delete tmp;
            } else {cur = cur->next;}}
        head = dummyHead->next;
        delete dummyHead;
        return head;
    }

附:和鸡皮题的对线记录

鸡皮题:实际上,dummy->next 和 head 在这段代码中并不是同一块地址空间的内容。在函数中的操作并没有改变原始链表中的节点的连接关系,而是在新的dummy节点上进行操作,因此返回的结果应该为dummy->next 而不是 head。
当你在函数返回 dummy->next 时,实际上是返回了经过修改后的链表头。原始的 head 节点并没有发生改变,因为你在操作链表时只是在 dummy 节点上进行的连接修改。
如果你想改变原始链表的头节点,可以修改函数的返回类型为 ListNode* & 或者使用引用类型进行传参,并在函数中通过修改传入的引用参数来修改原链表头节点。
我:但没有引用类型,head传过去的也是一个实际的内存地址啊
(心里确实有这样的疑惑,因为和我的常识不符)
鸡皮题:在C++中,虽然我们传递指针或者引用参数时是传递的地址,但在函数内部进行的指针或引用的指向修改,并不影响原始指针或引用的指向。因此,在函数内部操作的数据只是在函数内部生效,不会影响原始数据的内容。所以,你在上述代码中对链表进行的操作并没有修改原始链表的连接关系,所以返回的是原始链表头节点的地址。
如果你想修改原始链表,可以通过引用传递一个指向链表头节点的指针或者引用,在函数内部通过修改传入的指针或引用来改变原始链表的内容。
我:地址指向的修改都不影响吗?
(常识是肯定是修改的啊,指针传参数,引用传参数,这是我的常识)
鸡皮题:地址指向的修改是影响的,但是在你的代码中,你只是通过改变pre->next指针的指向来实现删除节点的操作,并没有改变head指针本身的值。因此,虽然dummy->next和head初始时指向同一个节点,但是在函数执行过程中,只有dummy->next的指向发生了变化,而head指针本身并没有被修改。
如果你希望返回的是修改后的链表头节点,你可以在函数内部维护一个新的指针变量来记录新的头节点,然后在操作结束后返回这个新的头节点。这样就能返回修改后的链表了。

鸡皮题是这样把我说服的,确实应该是这个样子的,我倒腾的指针都没有去试图改变head本身
有这么一个模糊的抽象,但并不是很清晰,说明思维还是有些混乱

LeetCode 707.设计链表

这个难
读了题云了一会,直接看卡哥的吧

class MyLinkedList {
public:
    // 定义链表节点结构体
    struct LinkedNode {
        int val;
        LinkedNode* next;
        LinkedNode(int val):val(val), next(nullptr){}
    };

    // 初始化链表
    MyLinkedList() {
        _dummyHead = new LinkedNode(0); // 这里定义的头结点 是一个虚拟头结点,而不是真正的链表头结点
        _size = 0;
    }

    // 获取到第index个节点数值,如果index是非法数值直接返回-1, 注意index是从0开始的,第0个节点就是头结点
    int get(int index) {
        if (index > (_size - 1) || index < 0) {
            return -1;
        }
        LinkedNode* cur = _dummyHead->next;
        while(index--){ // 如果--index 就会陷入死循环
            cur = cur->next;
        }
        return cur->val;
    }

    // 在链表最前面插入一个节点,插入完成后,新插入的节点为链表的新的头结点
    void addAtHead(int val) {
        LinkedNode* newNode = new LinkedNode(val);
        newNode->next = _dummyHead->next;
        _dummyHead->next = newNode;
        _size++;
    }

    // 在链表最后面添加一个节点
    void addAtTail(int val) {
        LinkedNode* newNode = new LinkedNode(val);
        LinkedNode* cur = _dummyHead;
        while(cur->next != nullptr){
            cur = cur->next;
        }
        cur->next = newNode;
        _size++;
    }

    // 在第index个节点之前插入一个新节点,例如index为0,那么新插入的节点为链表的新头节点。
    // 如果index 等于链表的长度,则说明是新插入的节点为链表的尾结点
    // 如果index大于链表的长度,则返回空
    // 如果index小于0,则在头部插入节点
    void addAtIndex(int index, int val) {

        if(index > _size) return;
        if(index < 0) index = 0;        
        LinkedNode* newNode = new LinkedNode(val);
        LinkedNode* cur = _dummyHead;
        while(index--) {
            cur = cur->next;
        }
        newNode->next = cur->next;
        cur->next = newNode;
        _size++;
    }

    // 删除第index个节点,如果index 大于等于链表的长度,直接return,注意index是从0开始的
    void deleteAtIndex(int index) {
        if (index >= _size || index < 0) {
            return;
        }
        LinkedNode* cur = _dummyHead;
        while(index--) {
            cur = cur ->next;
        }
        LinkedNode* tmp = cur->next;
        cur->next = cur->next->next;
        delete tmp;
        //delete命令指示释放了tmp指针原本所指的那部分内存,
        //被delete后的指针tmp的值(地址)并非就是NULL,而是随机值。也就是被delete后,
        //如果不再加上一句tmp=nullptr,tmp会成为乱指的野指针
        //如果之后的程序不小心使用了tmp,会指向难以预想的内存空间
        tmp=nullptr;
        _size--;
    }

    // 打印链表
    void printLinkedList() {
        LinkedNode* cur = _dummyHead;
        while (cur->next != nullptr) {
            cout << cur->next->val << " ";
            cur = cur->next;
        }
        cout << endl;
    }
private:
    int _size;
    LinkedNode* _dummyHead;

};

今天有点上强度
现在有点困,明天又直接4道题+链表总结
这个强度是否有点太高了
准备休息了,梦里继续想
无所谓,我会开摆

LeetCode 206.反转链表

这个感觉还好,没有上个那么脑袋疼
但也不是一遍过的
最开始没有else break;陷入死循环了

    ListNode* reverseList(ListNode* head) {
        ListNode* pre = NULL;
        ListNode* cur = head;
        while(cur){
            ListNode* tmp = NULL;
            if(cur->next) tmp = cur->next;
            cur->next = pre;
            if(tmp){
                pre = cur;
                cur = tmp;
            }else break; 
        }
        return cur;
    }

如果再定义一个新的链表,实现链表元素的反转,其实这是对内存空间的浪费。
其实只需要改变链表的next指针的指向,直接将链表反转 ,而不用重新定义一个新的链表,如图所示:
反转链表
之前链表的头节点是元素1, 反转之后头结点就是元素5 ,这里并没有添加或者删除节点,仅仅是改变next指针的方向。

(1)首先定义一个cur指针,指向头结点,再定义一个pre指针,初始化为null。
(2)然后就要开始反转了,首先要把 cur->next 节点用tmp指针保存一下,也就是保存一下这个节点。
(3)为什么要保存一下这个节点呢,因为接下来要改变 cur->next 的指向了,将cur->next 指向pre ,此时已经反转了第一个节点了。
(4)接下来,就是循环走如下代码逻辑了,继续移动pre和cur指针。
(5)最后,cur 指针已经指向了null,循环结束,链表也反转完毕了。 此时我们return pre指针就可以了,pre指针就指向了新的头结点。

双指针法

ListNode* reverseList(ListNode* head) {
        ListNode* temp; // 保存cur的下一个节点
        ListNode* cur = head;
        ListNode* pre = NULL;
        while(cur) {
            temp = cur->next;  // 保存一下 cur的下一个节点,因为接下来要改变cur->next
            cur->next = pre; // 翻转操作
            // 更新pre 和 cur指针
            pre = cur;
            cur = temp;
        }
        return pre;
    }

感觉相比之下我的代码有点瞎忙活
明明不用ifelse分支去判断的,我写了俩分支去判断
这里我的思路也不是很清晰

递归法

    ListNode* reverse(ListNode* pre,ListNode* cur){
        if(cur == NULL) return pre;
        ListNode* temp = cur->next;
        cur->next = pre;
        // 可以和双指针法的代码进行对比,如下递归的写法,其实就是做了这两步
        // pre = cur;
        // cur = temp;
        return reverse(cur,temp);
    }
    ListNode* reverseList(ListNode* head) {
        // 和双指针法初始化是一样的逻辑
        // ListNode* cur = head;
        // ListNode* pre = NULL;
        return reverse(NULL, head);
    }

递归法相对抽象一些,但是其实和双指针法是一样的逻辑,同样是当cur为空的时候循环结束,不断将cur指向pre的过程。

关键是初始化的地方,可能有的同学会不理解, 可以看到双指针法中初始化 cur = head,pre = NULL,在递归法中可以从如下代码看出初始化的逻辑也是一样的,只不过写法变了。

具体可以看代码(已经详细注释),双指针法写出来之后,理解如下递归写法就不难了,代码逻辑都是一样的。

我们可以发现,上面的递归写法和双指针法实质上都是从前往后翻转指针指向,其实还有另外一种与双指针法不同思路的递归写法:从后往前翻转指针指向。

 ListNode* reverseList(ListNode* head) {
        // 边缘条件判断
        if(head == NULL) return NULL;
        if (head->next == NULL) return head;
        
        // 递归调用,翻转第二个节点开始往后的链表
        ListNode *last = reverseList(head->next);
        // 翻转头节点与第二个节点的指向
        head->next->next = head;
        // 此时的 head 节点为尾节点,next 需要指向 NULL
        head->next = NULL;
        return last;
    }

递归法没有看,脑袋疼,困,睡觉了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1587729.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis入门到通关之Redis介绍

文章目录 1.Redis简单介绍1.1 非关系型数据库介绍 2.本文介绍如下内容3.初始Redis3.1.认识NoSQL3.1.3.查询方式3.1.4.事务3.1.5.总结 3.2.认识Redis3.3 安装Redis 1.Redis简单介绍 Redis是一种键值型的 NoSql 数据库&#xff0c;这里有两个关键字&#xff1a; 键值型NoSql 其…

负荷预测 | Matlab基于TCN-LSTM-Attention单输入单输出时间序列多步预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.负荷预测 | Matlab基于TCN-LSTM-Attention单输入单输出时间序列多步预测&#xff1b; 2.单变量时间序列数据集&#xff0c;采用前12个时刻预测未来96个时刻的数据&#xff1b; 3.excel数据方便替换&#xff0c;运行…

C++算法 —— 回溯(二)

一、字母大小写全排列 1.链接 784. 字母大小写全排列 - 力扣&#xff08;LeetCode&#xff09; 2.描述 3.思路 首先&#xff0c;根据题意&#xff0c;这是一个不能重复的全排列&#xff0c;并且根据特定的规则&#xff0c;我们需要分三种情况&#xff0c;一种是当字符为数字…

Android源码解析之截屏事件流程

今天这篇文章我们主要讲一下Android系统中的截屏事件处理流程。用过android系统手机的同学应该都知道&#xff0c;一般的android手机按下音量减少键和电源按键就会触发截屏事件&#xff08;国内定制机做个修改的这里就不做考虑了&#xff09;。那么这里的截屏事件是如何触发的呢…

基于spring boot的班级综合测评管理系统

基于spring boot的班级综合测评管理系统设计与实现 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09; 数据库工具&#xff1a;Navicat11 开…

Linux进阶篇:linux操作系统一个神奇的分区:swap交换分区

linux操作系统一个神奇的分区&#xff1a;swap交换分区 1 Swap交换分区概念 Linux内核为了提高读写效率与速度&#xff0c;会将文件在内存中进行缓存&#xff0c;这部分内存就是Cache Memory(缓存内存)。即使你的程序运行结束后&#xff0c;Cache Memory也不会自动释放。这就…

微信小程序 django+nodejs电影院票务售票选座系统324kd

小程序Android端运行软件 微信开发者工具/hbuiderx uni-app框架&#xff1a;使用Vue.js开发跨平台应用的前端框架&#xff0c;编写一套代码&#xff0c;可编译到Android、小程序等平台。 前端&#xff1a;HTML5,CSS3 VUE 后端&#xff1a;java(springbootssm)/python(flaskdja…

网盘——显示在线用户

1、查看在线用户 客户端发送查看请求&#xff08;只发送用户的名字&#xff09;&#xff0c;服务器将数据库中在线的用户查询出来并发送给客户端&#xff0c;客户端接收在线用户信息并作显示。 1.1、查看数据库的数据&#xff0c;在这里需要使用socket&#xff0c;所以我们在…

springboot相关报错解决

Caused by: java.lang.ClassNotFoundException: 目录 Caused by: java.lang.ClassNotFoundException: org.springframework.context.event.GenericApplicationListener spring-boot-dependencies:jar:2.1.9.RELEASE was not found org.springframework.context.event.Generi…

界面设计【1】-项目的UI设计css

引言&#xff1a; 本篇博客对简单的css html界面设计做了简要介绍 这篇博客主要就是介绍了做横向项目中&#xff0c;CSS界面设计与优化。 界面设计【1】-项目的UI设计css 1. 什么是css?2. css编程demo3. 可视化效果 1. 什么是css? CSS是层叠样式表&#xff08;Cascading S…

大型语言模型有什么用?

大型语言模型有什么用&#xff1f; 大型语言模型识别、总结、翻译、预测、生成文本和其他内容。 AI 应用程序正在总结文章、撰写故事和进行长时间对话——而大型语言模型正在承担繁重的工作。 大型语言模型或 LLM 是一种深度学习算法&#xff0c;可以根据从海量数据集中获得…

【PHP程序设计(高阶版)】——PHP操作MySQL教程

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…

Linux C应用编程:MQTT物联网

1 MQTT通信协议 MQTT&#xff08;Message Queuing Telemetry Transport&#xff0c;消息队列遥测传 输&#xff09;是一种基于客户端-服务端架构的消息传输协议&#xff0c;如今&#xff0c;MQTT 成为了最受欢迎的物联网协议&#xff0c;已广泛应用于车联网、智能家居、即时聊…

TikTok怎么开通ads账户

一、TikTok的两种主流玩法 1、付费流量 蓝V认证TikTokAds&#xff08;广告消耗达到3w美金可申请蓝V认证&#xff09; 可以快速引流到独立站 2、免费流量 自己运营种草号、开直播 二、TikTok Ads如何开户&#xff1f; 开通广告账户 首先国内是无法自己申请TikTok Ads的&a…

精彩回顾 | 「AI 驱动增长,研发数智化升级」分享沙龙成功举办

AI 应用元年&#xff0c;人工智能技术将如何助力企业发展新质生产力&#xff0c;构建增长动能&#xff1f; 日前&#xff0c;LigaAI 与深圳市企业联合会、西云数据联合举办了「AI 驱动增长&#xff0c;研发数智化升级」技术专题沙龙。本次活动围绕「AI」应用实践&#xff0c;邀…

【QingHub】EMQX单节点一键部署

EMQX 简介 EMQX是全球最具扩展性的开源MQTT 代理&#xff0c;具有高性能&#xff0c;可在 1 个集群中连接 1 亿多个 IoT 设备&#xff0c;同时保持每秒 100 万条消息的吞吐量和亚毫秒级的延迟。 EMQX 支持MQTT、HTTP、QUIC、WebSocket等多种开放标准协议。它 100% 符合MQTT 5.…

电商技术揭秘十九:电商平台的智能化与自动化技术

相关系列文章 电商技术揭秘一&#xff1a;电商架构设计与核心技术 电商技术揭秘二&#xff1a;电商平台推荐系统的实现与优化 电商技术揭秘三&#xff1a;电商平台的支付与结算系统 电商技术揭秘四&#xff1a;电商平台的物流管理系统 电商技术揭秘五&#xff1a;电商平台…

Spring Web MVC的入门学习(二)

本篇接着Spring Web MVC的入门学习&#xff08;一&#xff09;-CSDN博客来继续学习Spring MVC。 一、从请求中获取Header 1、传统获取 header 获取Header也是从 HttpServletRequest 中获取。 代码&#xff1a; import jakarta.servlet.http.HttpServletRequest; import jakar…

社交网络的未来图景:探索Facebook的发展趋势

随着科技的不断进步和社会的快速变迁&#xff0c;社交网络作为连接人与人之间的重要纽带&#xff0c;扮演着日益重要的角色。而在众多社交网络中&#xff0c;Facebook作为老牌巨头&#xff0c;一直在探索着新的发展路径&#xff0c;引领着社交网络的未来图景。本文将深入探索Fa…

linux学习:栈(汉诺塔游戏)

第一根上面套着 64 个圆的金片&#xff0c;最大的一个在底下&#xff0c;其余一个比一个小&#xff0c;依次叠上去&#xff0c;庙里的众僧不倦地 把它们一个个地从这根棒搬到另一根棒上&#xff0c;规定可利用中间的一根棒作为帮助&#xff0c;但每次只能 搬一个&#xff0c;而…