【RAG实践】基于LlamaIndex和Qwen1.5搭建基于本地知识库的问答机器人

news2024/11/24 18:26:51

什么是 RAG

LLM 会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。

RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信。

一个典型的RAG的例子:

图片

这里面主要包括包括三个基本步骤:

  1. 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。

  2. 检索 — 根据问题和 chunks 的相似度检索相关文档片段。

  3. 生成 — 以检索到的上下文为条件,生成问题的回答。

技术交流&资料

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

成立了大模型面试和技术交流群,相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:来自CSDN + 技术交流

  • 重磅消息!《大模型面试宝典》(2024版) 正式发布!
  • 重磅消息!《大模型实战宝典》(2024版) 正式发布!

Qwen1.5版本年前开源了包括0.5B、1.8B、4B、7B、14B和72B在内的六种大小的基础和聊天模型,同时,也开源了量化模型。不仅提供了Int4和Int8的GPTQ模型,还有AWQ模型,以及GGUF量化模型。为了提升开发者体验,Qwen1.5的代码合并到Hugging Face Transformers中,开发者现在可以直接使用transformers>=4.37.0 而无需 trust_remote_code。

与之前的版本相比,Qwen1.5显著提升了聊天模型与人类偏好的一致性,并且改善了它们的多语言能力。所有模型提供了统一的上下文长度支持,支持32K上下文。还有,基础语言模型的质量也有所小幅改进。

Qwen1.5全系列统一具备强大的链接外部系统能力(agent/RAG/Tool-use/Code-interpreter)。

正因为Qwen1.5作为中文LLM率先合入了Transformers,我们也可以使用LLaMaIndex的原生HuggingFaceLLM来加载模型。

LLaMaIndex

LlamaIndex 是一个基于 LLM 的应用程序的数据框架,受益于上下文增强。 这种LLM系统被称为RAG系统,代表“检索增强生成”。LlamaIndex 提供了必要的抽象,可以更轻松地摄取、构建和访问私有或特定领域的数据,以便将这些数据安全可靠地注入 LLM 中,以实现更准确的文本生成。

图片

GTE文本向量

文本表示是自然语言处理(NLP)领域的核心问题, 其在很多NLP、信息检索的下游任务中发挥着非常重要的作用。近几年, 随着深度学习的发展,尤其是预训练语言模型的出现极大的推动了文本表示技术的效果, 基于预训练语言模型的文本表示模型在学术研究数据、工业实际应用中都明显优于传统的基于统计模型或者浅层神经网络的文本表示模型。这里, 我们主要关注基于预训练语言模型的文本表示。

图片

GTE-zh模型使用retromae初始化训练模型,之后利用两阶段训练方法训练模型:第一阶段利用大规模弱弱监督文本对数据训练模型,第二阶段利用高质量精标文本对数据以及挖掘的难负样本数据训练模型。

最佳实践

环境配置与安装

  1. python 3.10及以上版本

  2. pytorch 1.12及以上版本,推荐2.0及以上版本

  3. 建议使用CUDA 11.4及以上

安装依赖库

!pip install llama-index llama-index-llms-huggingface ipywidgets
!pip install transformers -U
import logging
import sys

logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))


from IPython.display import Markdown, display
import torch
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.prompts import PromptTemplate
from modelscope import snapshot_download
from llama_index.core.base.embeddings.base import BaseEmbedding, Embedding
from abc import ABC
from typing import Any, List, Optional, Dict, cast
from llama_index.core import (
    VectorStoreIndex,
    ServiceContext,
    set_global_service_context,
    SimpleDirectoryReader,
)

加载大语言模型

因为Qwen本次支持了Transformers,使用HuggingFaceLLM加载模型,模型为(Qwen1.5-4B-Chat)

# Model names 
qwen2_4B_CHAT = "qwen/Qwen1.5-4B-Chat"

selected_model = snapshot_download(qwen2_4B_CHAT)

SYSTEM_PROMPT = """You are a helpful AI assistant.
"""

query_wrapper_prompt = PromptTemplate(
    "[INST]<<SYS>>\n" + SYSTEM_PROMPT + "<</SYS>>\n\n{query_str}[/INST] "
)

llm = HuggingFaceLLM(
    context_window=4096,
    max_new_tokens=2048,
    generate_kwargs={"temperature": 0.0, "do_sample": False},
    query_wrapper_prompt=query_wrapper_prompt,
    tokenizer_name=selected_model,
    model_name=selected_model,
    device_map="auto",
    # change these settings below depending on your GPU
    model_kwargs={"torch_dtype": torch.float16},
)

加载数据:导入测试数据

!mkdir -p 'data/xianjiaoda/'
!wget 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/rag/xianjiaoda.md' -O 'data/xianjiaoda/xianjiaoda.md'
documents = SimpleDirectoryReader("/mnt/workspace/data/xianjiaoda/").load_data()
documents

构建Embedding类

加载GTE模型,使用GTE模型构造Embedding类

embedding_model = "iic/nlp_gte_sentence-embedding_chinese-base"
class ModelScopeEmbeddings4LlamaIndex(BaseEmbedding, ABC):
    embed: Any = None
    model_id: str = "iic/nlp_gte_sentence-embedding_chinese-base"

    def __init__(
            self,
            model_id: str,
            **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        try:
            from modelscope.models import Model
            from modelscope.pipelines import pipeline
            from modelscope.utils.constant import Tasks
            # 使用modelscope的embedding模型(包含下载)
            self.embed = pipeline(Tasks.sentence_embedding, model=self.model_id)

        except ImportError as e:
            raise ValueError(
                "Could not import some python packages." "Please install it with `pip install modelscope`."
            ) from e

    def _get_query_embedding(self, query: str) -> List[float]:
        text = query.replace("\n", " ")
        inputs = {"source_sentence": [text]}
        return self.embed(input=inputs)['text_embedding'][0].tolist()

    def _get_text_embedding(self, text: str) -> List[float]:
        text = text.replace("\n", " ")
        inputs = {"source_sentence": [text]}
        return self.embed(input=inputs)['text_embedding'][0].tolist()

    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        texts = list(map(lambda x: x.replace("\n", " "), texts))
        inputs = {"source_sentence": texts}
        return self.embed(input=inputs)['text_embedding'].tolist()

    async def _aget_query_embedding(self, query: str) -> List[float]:
        return self._get_query_embedding(query)

建设索引

加载数据后,基于文档对象列表(或节点列表),建设他们的index,就可以方便的检索他们。

embeddings = ModelScopeEmbeddings4LlamaIndex(model_id=embedding_model)
service_context = ServiceContext.from_defaults(embed_model=embeddings, llm=llm)
set_global_service_context(service_context)

index = VectorStoreIndex.from_documents(documents)

查询和问答

搭建基于本地知识库的问答引擎

query_engine = index.as_query_engine()
response = query_engine.query("西安交大是由哪几个学校合并的?")
print(response)

通俗易懂讲解大模型系列

  • 重磅消息!《大模型面试宝典》(2024版) 正式发布!

  • 重磅消息!《大模型实战宝典》(2024版) 正式发布!

  • 做大模型也有1年多了,聊聊这段时间的感悟!

  • 用通俗易懂的方式讲解:不要再苦苦寻觅了!AI 大模型面试指南(含答案)的最全总结来了!

  • 用通俗易懂的方式讲解:我的大模型岗位面试总结:共24家,9个offer

  • 用通俗易懂的方式讲解:大模型 RAG 在 LangChain 中的应用实战

  • 用通俗易懂的方式讲解:一文讲清大模型 RAG 技术全流程

  • 用通俗易懂的方式讲解:如何提升大模型 Agent 的能力?

  • 用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!

  • 用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了

  • 用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型

  • 用通俗易懂的方式讲解:使用 LangChain 和大模型生成海报文案

  • 用通俗易懂的方式讲解:ChatGLM3-6B 部署指南

  • 用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了

  • 用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统

  • 用通俗易懂的方式讲解:在 Ubuntu 22 上安装 CUDA、Nvidia 显卡驱动、PyTorch等大模型基础环境

  • 用通俗易懂的方式讲解:Llama2 部署讲解及试用方式

  • 用通俗易懂的方式讲解:基于 LangChain 和 ChatGLM2 打造自有知识库问答系统

  • 用通俗易懂的方式讲解:一份保姆级的 Stable Diffusion 部署教程,开启你的炼丹之路

  • 用通俗易懂的方式讲解:对 embedding 模型进行微调,我的大模型召回效果提升了太多了

  • 用通俗易懂的方式讲解:LlamaIndex 官方发布高清大图,纵览高级 RAG技术

  • 用通俗易懂的方式讲解:为什么大模型 Advanced RAG 方法对于AI的未来至关重要?

  • 用通俗易懂的方式讲解:使用 LlamaIndex 和 Eleasticsearch 进行大模型 RAG 检索增强生成

  • 用通俗易懂的方式讲解:基于 Langchain 框架,利用 MongoDB 矢量搜索实现大模型 RAG 高级检索方法

  • 用通俗易懂的方式讲解:使用Llama-2、PgVector和LlamaIndex,构建大模型 RAG 全流程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1580745.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Pillow教程09:图片格式(png,jpg,ico等)批量转换+批量修改图片尺寸

---------------Pillow教程集合--------------- Python项目18&#xff1a;使用Pillow模块&#xff0c;随机生成4位数的图片验证码 Python教程93&#xff1a;初识Pillow模块&#xff08;创建Image对象查看属性图片的保存与缩放&#xff09; Pillow教程02&#xff1a;图片的裁…

场景文本检测识别学习 day02(AlexNet论文阅读、ResNet论文精读)

怎么读论文 在第一遍阅读的时候&#xff0c;只需要看题目&#xff0c;摘要和结论&#xff0c;先看题目是不是跟我的方向有关&#xff0c;看摘要是不是用到了我感兴趣的方法&#xff0c;看结论他是怎么解决摘要中提出的问题&#xff0c;或者怎么实现摘要中的方法&#xff0c;然…

华为机试题

目录 第一章、HJ1计算字符串最后一个单词的长度&#xff0c;单词以空格隔开。1.1&#xff09;描述1.2&#xff09;解题第二章、算法题HJ2 计算某字符出现次数1.1&#xff09;题目描述1.2&#xff09;解题思路与答案第三章、算法题HJ3 明明的随机数1.1&#xff09;题目描述1.2&a…

C++——优先级队列

前言&#xff1a;这篇文章我们继续来分享一个c的容器——优先级队列。 一.理解优先级 何为优先级一说&#xff1f;实际上就是有顺序的意思。 优先级队列&#xff0c;即有顺序的队列&#xff0c;是一个无需我们自己进行排序操作&#xff0c;在数据传入时就会由容器自己排好序的…

Linux系统安装内网穿透实现固定公网地址访问本地MinIO服务

文章目录 前言1. 创建Buckets和Access Keys2. Linux 安装Cpolar3. 创建连接MinIO服务公网地址4. 远程调用MinIO服务小结5. 固定连接TCP公网地址6. 固定地址连接测试 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的 人工智能学习网站&#xff0c; 通俗易懂&am…

【蓝桥杯嵌入式】定时器的PWM输出与输入捕获(测量频率与占空比)

【蓝桥杯嵌入式】定时器的PWM输出与脉冲输 入捕获&#xff08;测量频率与占空比&#xff09; PWM输出cubemx配置程序设计 输入捕获cubemx配置程序设计 真题典例分析 PWM输出 cubemx配置 PWM输出引脚配置&#xff0c;这里使用PA6和PA7引脚输出两路PWM信号&#xff0c;分别对应的…

计算机提示msvcp140.dll丢失的解决方法

在日常操作与深度应用计算机系统的过程中&#xff0c;我们难免会遭遇各类技术性问题。其中&#xff0c;一种颇为常见且可能导致应用程序无法正常启动或运行的情况便是“msvcp140.dll文件缺失”。这一现象&#xff0c;对于无论是经验丰富的IT专业人士&#xff0c;还是对计算机知…

Linux操作系统(六):文件系统组件

参考资料&#xff1a;阿秀的笔记 文件系统 1. 文件系统的基本组成2. 文件的使用3.文件如何存储3.1 目录怎么存储 4.Linux继承于Unix系统的Unix文件实现方式4.1 Linux Ext 2/3 文件系统4.2 Linux Ext 4 文件系统4.3 磁盘空闲空间的管理机制4.3.1 空闲表法4.3.2 空闲链表法4.3.3…

网易云歌曲评论抓取

网易云歌曲评论爬取 步骤1.找到一首歌曲2.按下F12键打开开发者模式,对其进行抓包3.查找获得评论数据的接口4.对获得评论数据接口进行分析5.构建加密函数方法一方法二运行结果全部代码使用Js文件只使用python新的代码小结与展望这次的任务是获取网易云音乐下面的评论,涉及的知…

安卓四大组件——Service篇

1.作用 长时间位于后台&#xff08;无界面&#xff09;完成用户指定操作 1.1两类状态 &#xff08;a&#xff09;started&#xff08;启动&#xff09;&#xff1a;当应用程序组件&#xff08;如activity&#xff09;调用startService()方法启动服务时&#xff0c;服务处于sta…

HJ1 字符串最后一个单词的长度(字符串,import java.util.HashSet;)

import java.util.Scanner;// 注意类名必须为 Main, 不要有任何 package xxx 信息 public class Main {public static void main(String[] args) {Scanner sc new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别int num sc.nextInt();boolean[] in new boolean[…

设计模式学习笔记 - 设计模式与范式 -行为型:8.状态模式:游戏、工作流引擎中常用的状态机是如何实现的?

概述 本章学习状态模式。在实际的开发中&#xff0c;状态模式并不是很常用&#xff0c;但是在能够用到的场景里&#xff0c;它可以发挥很大的作用。从这一点上看&#xff0c;它有点像我们之前讲到的组合模式。 状态模式一般用来实现状态机&#xff0c;而状态机常用在游戏、工…

✌2024/4/3—力扣—整数反转

代码实现&#xff1a; int reverse(int x) {long num 0;while (x ! 0) {num num * 10 x % 10;x x / 10;}if ((int)num ! num) {return 0;}return (int)num; }

使用手动连接,将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中,在自定义的槽函数中调用关闭函数

使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 将登录按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在槽函数中判断ui界面上输入的账号是否为"admin"&#xff0c;密码是否为…

Houdini笔记操作技巧_集锦

个人记录下&#xff0c;谨防遗忘。同时丰富下Hou的中文搜素环境。 1、自定义启动界面 ① 设置完界面后&#xff0c;保存自定义界面&#xff08;Save Current Desktop As...&#xff09; ② Edit-->Preferences-->General UIInterface-->Startup in Desktop&#xff1…

qt打包程序打包之跨平台

本文讲的是linux系统中的程序打包&#xff0c;首先我们创建一个简单的程序&#xff0c;我的程序叫做debtest 然后设置qmake来源&#xff0c;这个直接决定了程序依赖的qt库的位置&#xff0c;如果我们需要指定qt标准库的位置&#xff0c;那么qt环境就需要在那个位置。 修改前&am…

C# 如何修改项目名称

目录 背景具体步骤1、Visual Studio中修改项目名和程序集名称以及命名空间2、修改项目文件夹名3、修改解决方案里项目的路径4、再次打开解决方案&#xff0c;问题解决步骤总结 名词解释解决方案&#xff08;Solution&#xff09;项目&#xff08;Project&#xff09;程序集&…

【操作系统】CentOS7入门级安装

下载镜像 CentOS镜像下载Download (centos.org) 我们选择第一个 X86_64 CentOS Mirrors List 版本描述X86_X64带64位的32位扩展版(一般安装这个)ARM64 (aarch64)嵌入式。适用于微端(树莓派、机械臂、机械中控)IBM Power (ppc64le)专用于IBM POWER服务器 选择一个合适的链接 …

DSL - Wire 实现-ApiHug101

&#x1f917; ApiHug {Postman|Swagger|Api...} 快↑ 准√ 省↓ GitHub - apihug/apihug.com: All abou the Apihug apihug.com: 有爱&#xff0c;有温度&#xff0c;有质量&#xff0c;有信任ApiHug - API design Copilot - IntelliJ IDEs Plugin | Marketplace docs/ha…

javaScript手写专题——防抖/节流/闭包/Promise/深浅拷贝

目录 目录 一、 防抖/节流/闭包/定时器 编写一个组件&#xff0c;在input中输入文本&#xff0c;在给定的数据中查找相关的项目&#xff0c;并渲染搜索结果列表 1.新增InputSearch.vue组件 key的作用 2.新增 InputView.vue 3.添加路由 4.效果演示 follow up加上防抖怎么处理 1.…