高等数学(第七版)同济大学 习题11-7
函数作图软件:Mathematica
1. 试对曲面 Σ : z = x 2 + y 2 , x 2 + y 2 ≤ 1 , P = y 2 , Q = x , R = z 2 验证斯托克斯公式 . \begin{aligned}&1. \ 试对曲面\Sigma:z=x^2+y^2,x^2+y^2 \le 1,P=y^2,Q=x,R=z^2验证斯托克斯公式.&\end{aligned} 1. 试对曲面Σ:z=x2+y2,x2+y2≤1,P=y2,Q=x,R=z2验证斯托克斯公式.
解:
按右手法则, Σ 取上侧, Σ 的边界 Γ 为圆周 x 2 + y 2 = 1 , z = 1 ,从 z 轴正向看去,取逆时针方向, ∬ Σ ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z y 2 x z 2 ∣ = ∬ Σ ( 1 − 2 y ) d x d y = ∬ D x y ( 1 − 2 y ) d x d y ,转换为极坐标形式, 上式 = ∫ 0 2 π d θ ∫ 0 1 ( 1 − 2 ρ s i n θ ) ρ d ρ = ∫ 0 2 π [ ρ 2 2 − 2 3 ρ 3 s i n θ ] 0 1 d θ = ∫ 0 2 π ( 1 2 − 2 3 s i n θ ) d θ = π , Γ 的参数方程取 x = c o s t , y = s i n t , z = 1 , t 从 0 变到 2 π ,因此 ∮ Γ P d x + Q d y + R d z = ∫ 0 2 π ( − s i n 3 t + c o s 2 t ) d t = π . \begin{aligned} &\ \ 按右手法则,\Sigma取上侧,\Sigma的边界\Gamma为圆周x^2+y^2=1,z=1,从z轴正向看去,取逆时针方向,\\\\ &\ \ \iint_{\Sigma}\left|\begin{array}{cccc}dydz &dzdx &dxdy\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\y^2 & x &z^2\end{array}\right|=\iint_{\Sigma}(1-2y)dxdy=\iint_{D_{xy}}(1-2y)dxdy,转换为极坐标形式,\\\\ &\ \ 上式=\int_{0}^{2\pi}d\theta \int_{0}^{1}(1-2\rho sin\ \theta)\rho d\rho=\int_{0}^{2\pi}\left[\frac{\rho^2}{2}-\frac{2}{3}\rho^3sin\ \theta\right]_{0}^{1}d\theta=\int_{0}^{2\pi}\left(\frac{1}{2}-\frac{2}{3}sin\ \theta\right)d\theta=\pi,\\\\ &\ \ \Gamma的参数方程取x=cos\ t,y=sin\ t,z=1,t从0变到2\pi,因此\\\\ &\ \ \oint_{\Gamma}Pdx+Qdy+Rdz=\int_{0}^{2\pi}(-sin^3\ t+cos^2\ t)dt=\pi. & \end{aligned} 按右手法则,Σ取上侧,Σ的边界Γ为圆周x2+y2=1,z=1,从z轴正向看去,取逆时针方向, ∬Σ dydz∂x∂y2dzdx∂y∂xdxdy∂z∂z2 =∬Σ(1−2y)dxdy=∬Dxy(1−2y)dxdy,转换为极坐标形式, 上式=∫02πdθ∫01(1−2ρsin θ)ρdρ=∫02π[2ρ2−32ρ3sin θ]01dθ=∫02π(21−32sin θ)dθ=π, Γ的参数方程取x=cos t,y=sin t,z=1,t从0变到2π,因此 ∮ΓPdx+Qdy+Rdz=∫02π(−sin3 t+cos2 t)dt=π.
2. 利用斯托克斯公式,计算下列曲线积分: \begin{aligned}&2. \ 利用斯托克斯公式,计算下列曲线积分:&\end{aligned} 2. 利用斯托克斯公式,计算下列曲线积分:
( 1 ) ∮ Γ y d x + z d y + x d z ,其中 Γ 为圆周 x 2 + y 2 + z 2 = a 2 , x + y + z = 0 ,若从 x 轴的正向看去,这圆周是 取逆时针方向; ( 2 ) ∮ Γ ( y − z ) d x + ( z − x ) d y + ( x − y ) d z ,其中 Γ 为椭圆 x 2 + y 2 = a 2 , x a + z b = 1 ( a > 0 , b > 0 ) ,若从 x 轴 正向看去,这椭圆是取逆时针方向; ( 3 ) ∮ Γ 3 y d x − x z d y + y z 2 d z ,其中 Γ 是圆周 x 2 + y 2 = 2 z , z = 2 ,若从 z 轴正向看去,这圆周是取逆时针方向; ( 4 ) ∮ Γ 2 y d x + 3 x d y − z 2 d z ,其中 Γ 是圆周 x 2 + y 2 + z 2 = 9 , z = 0 ,若从 z 轴正向看去,这圆周是取逆时针方向 . \begin{aligned} &\ \ (1)\ \ \oint_{\Gamma}ydx+zdy+xdz,其中\Gamma为圆周x^2+y^2+z^2=a^2,x+y+z=0,若从x轴的正向看去,这圆周是\\\\ &\ \ \ \ \ \ \ \ 取逆时针方向;\\\\ &\ \ (2)\ \ \oint_{\Gamma}(y-z)dx+(z-x)dy+(x-y)dz,其中\Gamma为椭圆x^2+y^2=a^2,\frac{x}{a}+\frac{z}{b}=1\ (a \gt 0,b \gt 0),若从x轴\\\\ &\ \ \ \ \ \ \ \ 正向看去,这椭圆是取逆时针方向;\\\\ &\ \ (3)\ \ \oint_{\Gamma}3ydx-xzdy+yz^2dz,其中\Gamma是圆周x^2+y^2=2z,z=2,若从z轴正向看去,这圆周是取逆时针方向;\\\\ &\ \ (4)\ \ \oint_{\Gamma}2ydx+3xdy-z^2dz,其中\Gamma是圆周x^2+y^2+z^2=9,z=0,若从z轴正向看去,这圆周是取逆时针方向. & \end{aligned} (1) ∮Γydx+zdy+xdz,其中Γ为圆周x2+y2+z2=a2,x+y+z=0,若从x轴的正向看去,这圆周是 取逆时针方向; (2) ∮Γ(y−z)dx+(z−x)dy+(x−y)dz,其中Γ为椭圆x2+y2=a2,ax+bz=1 (a>0,b>0),若从x轴 正向看去,这椭圆是取逆时针方向; (3) ∮Γ3ydx−xzdy+yz2dz,其中Γ是圆周x2+y2=2z,z=2,若从z轴正向看去,这圆周是取逆时针方向; (4) ∮Γ2ydx+3xdy−z2dz,其中Γ是圆周x2+y2+z2=9,z=0,若从z轴正向看去,这圆周是取逆时针方向.
解:
(
1
)
取
Σ
为平面
x
+
y
+
z
=
0
的上侧被
Γ
所围成的部分,则
Σ
的面积为
π
a
2
,
Σ
的单位法向量为
n
=
(
c
o
s
α
,
c
o
s
β
,
c
o
s
γ
)
=
(
1
3
,
1
3
,
1
3
)
,根据斯托克斯公式,
∮
Γ
y
d
x
+
z
d
y
+
x
d
z
=
∬
Σ
∣
1
3
1
3
1
3
∂
∂
x
∂
∂
y
∂
∂
z
y
z
x
∣
d
S
=
∬
Σ
(
−
1
3
−
1
3
−
1
3
)
d
S
=
−
3
3
∬
Σ
d
S
=
−
3
π
a
2
.
\begin{aligned} &\ \ (1)\ 取\Sigma为平面x+y+z=0的上侧被\Gamma所围成的部分,则\Sigma的面积为\pi a^2,\Sigma的单位法向量为\\\\ &\ \ \ \ \ \ \ \ n=(cos\ \alpha, \ cos\ \beta, \ cos\ \gamma)=\left(\frac{1}{\sqrt{3}}, \ \frac{1}{\sqrt{3}}, \ \frac{1}{\sqrt{3}}\right),根据斯托克斯公式,\oint_{\Gamma}ydx+zdy+xdz=\\\\ &\ \ \ \ \ \ \ \ \iint_{\Sigma}\left|\begin{array}{cccc}\frac{1}{\sqrt{3}} &\frac{1}{\sqrt{3}} &\frac{1}{\sqrt{3}}\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\y &z &x\end{array}\right|dS=\iint_{\Sigma}\left(-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}}\right)dS=-\frac{3}{\sqrt{3}}\iint_{\Sigma}dS=-\sqrt{3}\pi a^2.\\\\ & \end{aligned}
(1) 取Σ为平面x+y+z=0的上侧被Γ所围成的部分,则Σ的面积为πa2,Σ的单位法向量为 n=(cos α, cos β, cos γ)=(31, 31, 31),根据斯托克斯公式,∮Γydx+zdy+xdz= ∬Σ
31∂x∂y31∂y∂z31∂z∂x
dS=∬Σ(−31−31−31)dS=−33∬ΣdS=−3πa2.
(
2
)
取
Σ
为平面
x
a
+
z
b
=
1
的上侧被
Γ
所围成的部分,
Σ
的单位法向量
n
=
(
c
o
s
α
,
c
o
s
β
,
c
o
s
γ
)
=
(
b
a
2
+
b
2
,
0
,
a
a
2
+
b
2
)
,根据斯托克斯公式,
∮
Γ
(
y
−
z
)
d
x
+
(
z
−
x
)
d
y
+
(
x
−
y
)
d
z
=
∬
Σ
∣
b
a
2
+
b
2
0
a
a
2
+
b
2
∂
∂
x
∂
∂
y
∂
∂
z
y
−
z
z
−
x
x
−
y
∣
d
S
=
−
2
(
a
+
b
)
a
2
+
b
2
∬
Σ
d
S
,因为
∬
Σ
d
S
=
Σ
的面积
A
,而
A
⋅
c
o
s
γ
=
A
⋅
a
a
2
+
b
2
=
Σ
在
x
O
y
面上的投影区域的面积
=
π
a
2
,所以
∬
Σ
d
S
=
π
a
2
a
a
2
+
b
2
=
π
a
a
2
+
b
2
,
则原式
=
−
2
(
a
+
b
)
a
2
+
b
2
⋅
π
a
a
2
+
b
2
=
−
2
π
a
(
a
+
b
)
.
\begin{aligned} &\ \ (2)\ 取\Sigma为平面\frac{x}{a}+\frac{z}{b}=1的上侧被\Gamma所围成的部分,\Sigma的单位法向量n=(cos\ \alpha, \ cos\ \beta, \ cos\ \gamma)=\\\\ &\ \ \ \ \ \ \ \ \left(\frac{b}{\sqrt{a^2+b^2}}, \ 0, \ \frac{a}{\sqrt{a^2+b^2}}\right),根据斯托克斯公式,\oint_{\Gamma}(y-z)dx+(z-x)dy+(x-y)dz=\\\\ &\ \ \ \ \ \ \ \ \iint_{\Sigma}\left|\begin{array}{cccc}\frac{b}{\sqrt{a^2+b^2}} &0 &\frac{a}{\sqrt{a^2+b^2}}\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\y-z &z-x &x-y\end{array}\right|dS=\frac{-2(a+b)}{\sqrt{a^2+b^2}}\iint_{\Sigma}dS,因为\iint_{\Sigma}dS=\Sigma的面积A,而A\cdot cos\ \gamma=\\\\ &\ \ \ \ \ \ \ \ A\cdot \frac{a}{\sqrt{a^2+b^2}}=\Sigma在xOy面上的投影区域的面积=\pi a^2,所以\iint_{\Sigma}dS=\frac{\pi a^2}{\frac{a}{\sqrt{a^2+b^2}}}=\pi a\sqrt{a^2+b^2},\\\\ &\ \ \ \ \ \ \ \ 则原式=\frac{-2(a+b)}{\sqrt{a^2+b^2}}\cdot \pi a\sqrt{a^2+b^2}=-2\pi a(a+b).\\\\ & \end{aligned}
(2) 取Σ为平面ax+bz=1的上侧被Γ所围成的部分,Σ的单位法向量n=(cos α, cos β, cos γ)= (a2+b2b, 0, a2+b2a),根据斯托克斯公式,∮Γ(y−z)dx+(z−x)dy+(x−y)dz= ∬Σ
a2+b2b∂x∂y−z0∂y∂z−xa2+b2a∂z∂x−y
dS=a2+b2−2(a+b)∬ΣdS,因为∬ΣdS=Σ的面积A,而A⋅cos γ= A⋅a2+b2a=Σ在xOy面上的投影区域的面积=πa2,所以∬ΣdS=a2+b2aπa2=πaa2+b2, 则原式=a2+b2−2(a+b)⋅πaa2+b2=−2πa(a+b).
(
3
)
取
Σ
为平面
z
=
2
的上侧被
Γ
所围成的部分,则
Σ
的单位法向量为
n
=
(
0
,
0
,
1
)
,
Σ
在
x
O
y
面上的投影区域
D
x
y
为
x
2
+
y
2
≤
4
,根据斯托克斯公式,
∮
Γ
3
y
d
x
−
x
z
d
y
+
y
z
2
d
z
=
∬
Σ
∣
0
0
1
∂
∂
x
∂
∂
y
∂
∂
z
3
y
−
x
z
y
z
2
∣
d
S
=
−
∬
Σ
(
z
+
3
)
d
S
=
−
∬
D
x
y
(
2
+
3
)
d
x
d
y
=
−
5
⋅
π
⋅
2
2
=
−
20
π
.
(
4
)
Γ
为
x
O
y
面上的圆周
x
2
+
y
2
=
9
,取
Σ
为圆域
x
2
+
y
2
≤
9
的上侧,根据斯托克斯公式,
∮
Γ
2
y
d
x
+
3
x
d
y
−
z
2
d
z
=
∬
Σ
∣
d
y
d
z
d
z
d
x
d
x
d
y
∂
∂
x
∂
∂
y
∂
∂
z
2
y
3
x
−
z
2
∣
=
∬
Σ
d
x
d
y
=
∬
D
x
y
d
x
d
y
=
9
π
.
\begin{aligned} &\ \ (3)\ 取\Sigma为平面z=2的上侧被\Gamma所围成的部分,则\Sigma的单位法向量为n=(0, \ 0, \ 1),\Sigma在xOy面上的投影区域\\\\ &\ \ \ \ \ \ \ \ D_{xy}为x^2+y^2 \le 4,根据斯托克斯公式,\oint_{\Gamma}3ydx-xzdy+yz^2dz=\iint_{\Sigma}\left|\begin{array}{cccc}0 &0 &1\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\3y &-xz &yz^2\end{array}\right|dS=\\\\ &\ \ \ \ \ \ \ \ -\iint_{\Sigma}(z+3)dS=-\iint_{D_{xy}}(2+3)dxdy=-5 \cdot \pi \cdot 2^2=-20\pi.\\\\ &\ \ (4)\ \Gamma为xOy面上的圆周x^2+y^2=9,取\Sigma为圆域x^2+y^2 \le 9的上侧,根据斯托克斯公式,\\\\ &\ \ \ \ \ \ \ \ \oint_{\Gamma}2ydx+3xdy-z^2dz=\iint_{\Sigma}\left|\begin{array}{cccc}dydz &dzdx &dxdy\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\2y &3x &-z^2\end{array}\right|=\iint_{\Sigma}dxdy=\iint_{D_{xy}}dxdy=9\pi. & \end{aligned}
(3) 取Σ为平面z=2的上侧被Γ所围成的部分,则Σ的单位法向量为n=(0, 0, 1),Σ在xOy面上的投影区域 Dxy为x2+y2≤4,根据斯托克斯公式,∮Γ3ydx−xzdy+yz2dz=∬Σ
0∂x∂3y0∂y∂−xz1∂z∂yz2
dS= −∬Σ(z+3)dS=−∬Dxy(2+3)dxdy=−5⋅π⋅22=−20π. (4) Γ为xOy面上的圆周x2+y2=9,取Σ为圆域x2+y2≤9的上侧,根据斯托克斯公式, ∮Γ2ydx+3xdy−z2dz=∬Σ
dydz∂x∂2ydzdx∂y∂3xdxdy∂z∂−z2
=∬Σdxdy=∬Dxydxdy=9π.
3. 求下列向量场 A 的旋度: \begin{aligned}&3. \ 求下列向量场A的旋度:&\end{aligned} 3. 求下列向量场A的旋度:
( 1 ) A = ( 2 z − 3 y ) i + ( 3 x − z ) j + ( y − 2 x ) k ; ( 2 ) A = ( z + s i n y ) i − ( z − x c o s y ) j ; ( 3 ) A = x 2 s i n y i + y 2 s i n ( x z ) j + x y s i n ( c o s z ) k . \begin{aligned} &\ \ (1)\ \ A=(2z-3y)i+(3x-z)j+(y-2x)k;\\\\ &\ \ (2)\ \ A=(z+sin\ y)i-(z-xcos\ y)j;\\\\ &\ \ (3)\ \ A=x^2sin\ yi+y^2sin(xz)j+xysin(cos\ z)k. & \end{aligned} (1) A=(2z−3y)i+(3x−z)j+(y−2x)k; (2) A=(z+sin y)i−(z−xcos y)j; (3) A=x2sin yi+y2sin(xz)j+xysin(cos z)k.
解:
( 1 ) r o t A = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z 2 z − 3 y 3 x − z y − 2 x ∣ = 2 i + 4 j + 6 k . ( 2 ) r o t A = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z z + s i n y − ( z − x c o s y ) 0 ∣ = i + j + ( c o s y − c o s y ) k = i + j . ( 3 ) r o t A = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z x 2 s i n y y 2 s i n ( x z ) x y s i n ( c o s z ) ∣ = [ x s i n ( c o s z ) − x y 2 c o s ( x z ) ] i − y s i n ( c o s z ) j + [ y 2 z c o s ( x z ) − x 2 c o s y ] k . \begin{aligned} &\ \ (1)\ rot A=\left|\begin{array}{cccc}i &j &k\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\2z-3y &3x-z &y-2x\end{array}\right|=2i+4j+6k.\\\\ &\ \ (2)\ rot A=\left|\begin{array}{cccc}i &j &k\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\z+sin\ y &-(z-xcos\ y) &0\end{array}\right|=i+j+(cos\ y-cos\ y)k=i+j.\\\\ &\ \ (3)\ rot A=\left|\begin{array}{cccc}i &j &k\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\x^2sin\ y &y^2sin(xz) &xysin(cos\ z)\end{array}\right|=\\\\ &\ \ \ \ \ \ \ \ [xsin(cos\ z)-xy^2cos(xz)]i-ysin(cos\ z)j+[y^2zcos(xz)-x^2cos\ y]k. & \end{aligned} (1) rotA= i∂x∂2z−3yj∂y∂3x−zk∂z∂y−2x =2i+4j+6k. (2) rotA= i∂x∂z+sin yj∂y∂−(z−xcos y)k∂z∂0 =i+j+(cos y−cos y)k=i+j. (3) rotA= i∂x∂x2sin yj∂y∂y2sin(xz)k∂z∂xysin(cos z) = [xsin(cos z)−xy2cos(xz)]i−ysin(cos z)j+[y2zcos(xz)−x2cos y]k.
4. 利用斯托克斯公式把曲面积分 ∬ Σ r o t A ⋅ n d S 化为曲线积分,并计算积分值,其中 A , Σ 及 n 分别如下: \begin{aligned}&4. \ 利用斯托克斯公式把曲面积分\iint_{\Sigma}rot A\cdot ndS化为曲线积分,并计算积分值,其中A,\Sigma及n分别如下:&\end{aligned} 4. 利用斯托克斯公式把曲面积分∬ΣrotA⋅ndS化为曲线积分,并计算积分值,其中A,Σ及n分别如下:
( 1 ) A = y 2 i + x y j + x z k , Σ 为上半球面 z = 1 − x 2 − y 2 的上侧, n 是 Σ 的单位法向量; ( 2 ) A = ( y − z ) + y z j − x z k , Σ 为立方体 { ( x , y , z ) ∣ 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2 , 0 ≤ z ≤ 2 } 的表面外侧去掉 x O y 面上 的那个底面, n 是 Σ 的单位法向量 . \begin{aligned} &\ \ (1)\ \ A=y^2i+xyj+xzk,\Sigma为上半球面z=\sqrt{1-x^2-y^2}的上侧,n是\Sigma的单位法向量;\\\\ &\ \ (2)\ \ A=(y-z)+yzj-xzk,\Sigma为立方体\{(x, \ y, \ z)\ |\ 0 \le x \le 2,0 \le y \le 2,0 \le z \le 2\}的表面外侧去掉xOy面上\\\\ &\ \ \ \ \ \ \ \ 的那个底面,n是\Sigma的单位法向量. & \end{aligned} (1) A=y2i+xyj+xzk,Σ为上半球面z=1−x2−y2的上侧,n是Σ的单位法向量; (2) A=(y−z)+yzj−xzk,Σ为立方体{(x, y, z) ∣ 0≤x≤2,0≤y≤2,0≤z≤2}的表面外侧去掉xOy面上 的那个底面,n是Σ的单位法向量.
解:
( 1 ) Σ 的正向边界曲线 Γ 为 x O y 面上的圆周 x 2 + y 2 = 1 ,从 z 轴正向看去 Γ 取逆时针向, Γ 的参数方程为 x = c o s t , y = s i n t , z = 0 , t 从 0 变到 2 π ,根据斯托克斯公式, ∬ Σ r o t A ⋅ n d S = ∮ Γ P d x + Q d y + R d z = ∮ Γ y 2 d x + x y d y + x z d z = ∫ 0 2 π [ s i n 2 t ⋅ ( − s i n t ) + c o s t ⋅ s i n t ⋅ c o s t ] d t = ∫ 0 2 π ( 1 − 2 c o s 2 t ) d ( c o s t ) = 0. ( 2 ) Σ 的边界曲线 Γ 为 x O y 面上由直线 x = 0 , y = 0 , x = 2 , y = 2 所围成的正方形的边界,从 z 轴正向看去取 逆时针向,根据斯托克斯公式, ∬ Σ r o t A ⋅ n d S = ∮ Γ P d x + Q d y + R d z = ∮ Γ ( y − z ) d x + y z z d y − x z d z = ∮ Γ y d x = ∫ 2 0 2 d x = − 4. \begin{aligned} &\ \ (1)\ \Sigma的正向边界曲线\Gamma为xOy面上的圆周x^2+y^2=1,从z轴正向看去\Gamma取逆时针向,\Gamma的参数方程为\\\\ &\ \ \ \ \ \ \ \ x=cos\ t,y=sin\ t,z=0,t从0变到2\pi,根据斯托克斯公式,\iint_{\Sigma}rot A\cdot ndS=\oint_{\Gamma}Pdx+Qdy+Rdz=\\\\ &\ \ \ \ \ \ \ \ \oint_{\Gamma}y^2dx+xydy+xzdz=\int_{0}^{2\pi}[sin^2\ t\cdot (-sin\ t)+cos\ t\cdot sin\ t\cdot cos\ t]dt=\int_{0}^{2\pi}(1-2cos^2\ t)d(cos\ t)=0.\\\\ &\ \ (2)\ \Sigma的边界曲线\Gamma为xOy面上由直线x=0,y=0,x=2,y=2所围成的正方形的边界,从z轴正向看去取\\\\ &\ \ \ \ \ \ \ \ 逆时针向,根据斯托克斯公式,\iint_{\Sigma}rot A\cdot ndS=\oint_{\Gamma}Pdx+Qdy+Rdz=\oint_{\Gamma}(y-z)dx+yzzdy-xzdz=\\\\ &\ \ \ \ \ \ \ \ \oint_{\Gamma}ydx=\int_{2}^{0}2dx=-4. & \end{aligned} (1) Σ的正向边界曲线Γ为xOy面上的圆周x2+y2=1,从z轴正向看去Γ取逆时针向,Γ的参数方程为 x=cos t,y=sin t,z=0,t从0变到2π,根据斯托克斯公式,∬ΣrotA⋅ndS=∮ΓPdx+Qdy+Rdz= ∮Γy2dx+xydy+xzdz=∫02π[sin2 t⋅(−sin t)+cos t⋅sin t⋅cos t]dt=∫02π(1−2cos2 t)d(cos t)=0. (2) Σ的边界曲线Γ为xOy面上由直线x=0,y=0,x=2,y=2所围成的正方形的边界,从z轴正向看去取 逆时针向,根据斯托克斯公式,∬ΣrotA⋅ndS=∮ΓPdx+Qdy+Rdz=∮Γ(y−z)dx+yzzdy−xzdz= ∮Γydx=∫202dx=−4.
5. 求下列向量场 A 沿闭曲线 Γ (从 z 轴正向看 Γ 依逆时针方向)的环流量: \begin{aligned}&5. \ 求下列向量场A沿闭曲线\Gamma(从z轴正向看\Gamma依逆时针方向)的环流量:&\end{aligned} 5. 求下列向量场A沿闭曲线Γ(从z轴正向看Γ依逆时针方向)的环流量:
( 1 ) A = − y i + x j + c k ( c 为常量), Γ 为圆周 x 2 + y 2 = 1 , z = 0 ; ( 2 ) A = ( x − z ) i + ( x 3 + y z ) j − 3 x y 2 k ,其中 Γ 为圆周 z = 2 − x 2 + y 2 , z = 0. \begin{aligned} &\ \ (1)\ \ A=-yi+xj+ck(c为常量),\Gamma为圆周x^2+y^2=1,z=0;\\\\ &\ \ (2)\ \ A=(x-z)i+(x^3+yz)j-3xy^2k,其中\Gamma为圆周z=2-\sqrt{x^2+y^2},z=0. & \end{aligned} (1) A=−yi+xj+ck(c为常量),Γ为圆周x2+y2=1,z=0; (2) A=(x−z)i+(x3+yz)j−3xy2k,其中Γ为圆周z=2−x2+y2,z=0.
解:
( 1 ) Γ 的参数方程为 x = c o s t , y = s i n t , z = 0 , t 从 0 变到 2 π ,则 ∮ Γ A ⋅ τ d s = ∮ Γ P d x + Q d y + R d z = ∮ Γ ( − y ) d x + x d y + c d z = ∫ 0 2 π [ ( − s i n t ) ( − s i n t ) + c o s t c o s t ] d t = ∫ 0 2 π d t = 2 π . ( 2 ) Γ 是 x O y 面上的圆周 x 2 + y 2 = 4 ,参数方程为 x = 2 c o s t , y = 2 s i n t , z = 0 , t 从 0 变到 2 π ,则 ∮ Γ A ⋅ τ d s = ∮ Γ P d x + Q d y + R d z = ∮ Γ ( x − z ) d x + ( x 3 + y z ) d y − 3 x y 2 d z = ∮ Γ x d x + x 3 d y = ∫ 0 2 π [ 2 c o s t ⋅ ( − 2 s i n t ) + 8 c o s 3 t ⋅ 2 c o s t ] d t = − 4 ∫ 0 2 π s i n t c o s t d t + 16 ∫ 0 2 π c o s 4 t d t = 0 + 64 ∫ 0 π 2 c o s 4 t d t = 64 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 = 12 π . \begin{aligned} &\ \ (1)\ \Gamma的参数方程为x=cos\ t,y=sin\ t,z=0,t从0变到2\pi,则\oint_{\Gamma}A\cdot \tau ds=\\\\ &\ \ \ \ \ \ \ \ \oint_{\Gamma}Pdx+Qdy+Rdz=\oint_{\Gamma}(-y)dx+xdy+cdz=\int_{0}^{2\pi}[(-sin\ t)(-sin\ t)+cos\ tcos\ t]dt=\int_{0}^{2\pi}dt=2\pi.\\\\ &\ \ (2)\ \Gamma是xOy面上的圆周x^2+y^2=4,参数方程为x=2cos\ t,y=2sin\ t,z=0,t从0变到2\pi,则\oint_{\Gamma}A\cdot \tau ds=\\\\ &\ \ \ \ \ \ \ \ \oint_{\Gamma}Pdx+Qdy+Rdz=\oint_{\Gamma}(x-z)dx+(x^3+yz)dy-3xy^2dz=\oint_{\Gamma}xdx+x^3dy=\\\\ &\ \ \ \ \ \ \ \ \int_{0}^{2\pi}[2cos\ t \cdot (-2sin\ t)+8cos^3\ t\cdot 2cos\ t]dt=-4\int_{0}^{2\pi}sin\ tcos\ tdt+16\int_{0}^{2\pi}cos^4\ tdt=\\\\ &\ \ \ \ \ \ \ \ 0+64\int_{0}^{\frac{\pi}{2}}cos^4\ tdt=64\cdot \frac{3}{4}\cdot \frac{1}{2}\cdot \frac{\pi}{2}=12\pi. & \end{aligned} (1) Γ的参数方程为x=cos t,y=sin t,z=0,t从0变到2π,则∮ΓA⋅τds= ∮ΓPdx+Qdy+Rdz=∮Γ(−y)dx+xdy+cdz=∫02π[(−sin t)(−sin t)+cos tcos t]dt=∫02πdt=2π. (2) Γ是xOy面上的圆周x2+y2=4,参数方程为x=2cos t,y=2sin t,z=0,t从0变到2π,则∮ΓA⋅τds= ∮ΓPdx+Qdy+Rdz=∮Γ(x−z)dx+(x3+yz)dy−3xy2dz=∮Γxdx+x3dy= ∫02π[2cos t⋅(−2sin t)+8cos3 t⋅2cos t]dt=−4∫02πsin tcos tdt+16∫02πcos4 tdt= 0+64∫02πcos4 tdt=64⋅43⋅21⋅2π=12π.
6. 证明 r o t ( a + b ) = r o t a + r o t b . \begin{aligned}&6. \ 证明\ rot(a+b)=rot\ a+rot\ b.&\end{aligned} 6. 证明 rot(a+b)=rot a+rot b.
解:
设 a = a x i + a y j + a z k , b = b x i + b y j + b z k ,其中 a x , a y , a z , b x , b y , b z 均为 x , y , z 的函数,则 r o t ( a + b ) = r o t ( ( a x + b x ) i + ( a y + b y ) j + ( a z + b z ) k ) = [ ∂ ( a z + b z ) ∂ y − ∂ ( a y + b y ) ∂ z ] i + [ ∂ ( a x + b x ) ∂ z − ∂ ( a z + b b ) ∂ x ] j + [ ∂ ( a y + b y ) ∂ x − ∂ ( a x + b x ) ∂ y ] k = [ ( ∂ a z ∂ y − ∂ a y ∂ z ) i + ( ∂ a x ∂ z − ∂ a z ∂ x ) j + ( ∂ a y ∂ x − ∂ a x ∂ y ) k ] + [ ( ∂ b z ∂ y − ∂ b y ∂ z ) i + ( ∂ b x ∂ z − ∂ b z ∂ x ) j + ( ∂ b y ∂ x − ∂ b x ∂ y ) k ] = r o t a + r o t b . \begin{aligned} &\ \ 设a=a_xi+a_yj+a_zk,b=b_xi+b_yj+b_zk,其中a_x,a_y,a_z,b_x,b_y,b_z均为x,y,z的函数,则\\\\ &\ \ rot(a+b)=rot((a_x+b_x)i+(a_y+b_y)j+(a_z+b_z)k)=\\\\ &\ \ \left[\frac{\partial(a_z+b_z)}{\partial y}-\frac{\partial(a_y+b_y)}{\partial z}\right]i+\left[\frac{\partial(a_x+b_x)}{\partial z}-\frac{\partial(a_z+b_b)}{\partial x}\right]j+\left[\frac{\partial(a_y+b_y)}{\partial x}-\frac{\partial(a_x+b_x)}{\partial y}\right]k=\\\\ &\ \ \left[\left(\frac{\partial a_z}{\partial y}-\frac{\partial a_y}{\partial z}\right)i+\left(\frac{\partial a_x}{\partial z}-\frac{\partial a_z}{\partial x}\right)j+\left(\frac{\partial a_y}{\partial x}-\frac{\partial a_x}{\partial y}\right)k\right]+\left[\left(\frac{\partial b_z}{\partial y}-\frac{\partial b_y}{\partial z}\right)i+\left(\frac{\partial b_x}{\partial z}-\frac{\partial b_z}{\partial x}\right)j+\left(\frac{\partial b_y}{\partial x}-\frac{\partial b_x}{\partial y}\right)k\right]=\\\\ &\ \ rot\ a+rot\ b. & \end{aligned} 设a=axi+ayj+azk,b=bxi+byj+bzk,其中ax,ay,az,bx,by,bz均为x,y,z的函数,则 rot(a+b)=rot((ax+bx)i+(ay+by)j+(az+bz)k)= [∂y∂(az+bz)−∂z∂(ay+by)]i+[∂z∂(ax+bx)−∂x∂(az+bb)]j+[∂x∂(ay+by)−∂y∂(ax+bx)]k= [(∂y∂az−∂z∂ay)i+(∂z∂ax−∂x∂az)j+(∂x∂ay−∂y∂ax)k]+[(∂y∂bz−∂z∂by)i+(∂z∂bx−∂x∂bz)j+(∂x∂by−∂y∂bx)k]= rot a+rot b.
7. 设 u = u ( x , y , z ) 具有二阶连续偏导数,求 r o t ( g r a d u ) . \begin{aligned}&7. \ 设u=u(x, \ y, \ z)具有二阶连续偏导数,求rot(grad\ u).&\end{aligned} 7. 设u=u(x, y, z)具有二阶连续偏导数,求rot(grad u).
解:
g r a d u = ∂ u ∂ x i + ∂ u ∂ y j + ∂ u ∂ z k , r o t ( g r a d u ) = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z ∂ u ∂ x ∂ u ∂ y ∂ u ∂ z ∣ = ( ∂ 2 u ∂ z ∂ y − ∂ 2 u ∂ y ∂ z ) i + ( ∂ 2 u ∂ x ∂ z − ∂ 2 u ∂ z ∂ x ) j + ( ∂ 2 u ∂ y ∂ x − ∂ 2 u ∂ x ∂ y ) k = 0 i + 0 j + 0 k = 0. \begin{aligned} &\ \ grad\ u=\frac{\partial u}{\partial x}i+\frac{\partial u}{\partial y}j+\frac{\partial u}{\partial z}k,rot(grad\ u)=\left|\begin{array}{cccc}i &j &k\\\frac{\partial}{\partial x} & \frac{\partial}{\partial y} &\frac{\partial}{\partial z}\\\frac{\partial u}{\partial x} &\frac{\partial u}{\partial y} &\frac{\partial u}{\partial z}\end{array}\right|=\\\\ &\ \ \left(\frac{\partial^2\ u}{\partial z\partial y}-\frac{\partial^2\ u}{\partial y\partial z}\right)i+\left(\frac{\partial^2\ u}{\partial x\partial z}-\frac{\partial^2\ u}{\partial z\partial x}\right)j+\left(\frac{\partial^2\ u}{\partial y\partial x}-\frac{\partial^2\ u}{\partial x\partial y}\right)k=0i+0j+0k=0. & \end{aligned} grad u=∂x∂ui+∂y∂uj+∂z∂uk,rot(grad u)= i∂x∂∂x∂uj∂y∂∂y∂uk∂z∂∂z∂u = (∂z∂y∂2 u−∂y∂z∂2 u)i+(∂x∂z∂2 u−∂z∂x∂2 u)j+(∂y∂x∂2 u−∂x∂y∂2 u)k=0i+0j+0k=0.