探索实践昏暗光线低光照场景下目标检测,基于YOLOv7【tiny/l/x】模型开发构建昏暗光线低光照场景下的目标检测识别系统

news2025/1/24 1:26:01

昏暗光线低光照条件下的目标检测问题,是机器视觉领域一个长期存在且持续受到关注的挑战。这个问题的背景主要源自现代社会对机器视觉技术的广泛需求,特别是在光线条件不佳的环境下,如夜间监控、自动驾驶、安防系统等场景。在昏暗光线或低光照条件下,图像数据的采集和处理变得尤为困难。由于光线不足,图像中的目标往往难以清晰地显示出来,导致目标的边缘模糊、颜色信息丢失等问题。这不仅影响了图像的视觉效果,也给目标检测任务带来了极大的挑战。目标检测作为计算机视觉领域的基本任务,是实例分割、目标跟踪等其他视觉任务的重要基础。在昏暗光线低光照条件下,目标检测的准确性会受到严重影响,可能导致漏检、误检等问题,从而影响整个视觉系统的性能。因此,研究昏暗光线低光照条件下的目标检测问题,对于提高机器视觉系统的性能和稳定性具有重要意义。这不仅可以推动计算机视觉技术的发展,还可以为实际应用提供更好的技术支持,如提高夜间监控的可靠性、增强自动驾驶系统的安全性等。

在前文中我们已经有过一些开发实践感兴趣的话可以自行移步阅读即可:

《探索实践低光照场景下YOLOv5s模型上限,融合CBAM注意力机制开发构建基于改进YOLOv5s的低光照条件下目标检测识别分析系统》

《探索实践昏暗光线低光照场景下目标检测,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建昏暗光线低光照场景下的目标检测识别系统》

本文的主要目的是想要基于YOLOv7来开发实践昏暗光线低光照场景下的目标检测模型,探索YOLOv7不同参数模型的性能表现情况,首先看下实例效果:

简单看下数据集,数据集来源于网络源:

可以看到:整体数据的光线光照条件都是很一般的。

标注文件如下所示:

实例标注内容如下:

4 0.344675 0.89645 0.204142 0.100592
11 0.702663 0.885602 0.156805 0.094675
7 0.840237 0.894477 0.189349 0.100592
6 0.230769 0.822485 0.053254 0.031558
8 0.482249 0.861933 0.100592 0.051282
0 0.428994 0.844181 0.065089 0.043393

YOLOv7是 YOLO 系列最新推出的YOLO 结构,在 5 帧/秒到 160 帧/秒范围内,其速度和精度都超过了大部分已知的目标检测器,在 GPU V100 已知的 30 帧/秒以上的实时目标检测器中,YOLOv7 的准确率最高。根据代码运行环境的不同(边缘 GPU、普通 GPU 和云 GPU),YOLOv7 设置了三种基本模型,分别称为 YOLOv7-tiny、YOLOv7和 YOLOv7-W6。相比于 YOLO 系列其他网络 模 型 ,YOLOv7 的 检 测 思 路 与YOLOv4、YOLOv5相似,YOLOv7 网络主要包含了 Input(输入)、Backbone(骨干网络)、Neck(颈部)、Head(头部)这四个部分。首先,图片经过输入部分数据增强等一系列操作进行预处理后,被送入主干网,主干网部分对处理后的图片提取特征;随后,提取到的特征经过 Neck 模块特征融合处理得到大、中、小三种尺寸的特征;最终,融合后的特征被送入检测头,经过检测之后输出得到结果。
YOLOv7 网络模型的主干网部分主要由卷积、E-ELAN 模块、MPConv 模块以及SPPCSPC 模块构建而成 。在 Neck 模块,YOLOv7 与 YOLOv5 网络相同,也采用了传统的 PAFPN 结构。FPN是YoloV7的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV7里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。Head检测头部分,YOLOv7 选用了表示大、中、小三种目标尺寸的 IDetect 检测头,RepConv模块在训练和推理时结构具有一定的区别。

训练数据配置文件如下所示:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test



# number of classes
nc: 12


# class names
names: ['Bicycle','Boat','Bottle','Bus','Car','Cat','Chair','Cup','Dog','Motorbike','People','Table']

这里主要是选择了yolov7-tiny、yolov7和yolov7x这三款不同参数量级的模型来进行开发训练,最终线上选取的是yolov7系列的模型作为推理模型,这里给出来yolov7的模型文件:

# parameters
nc: 12  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32
 
# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
  
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      
   [-1, 1, Conv, [64, 3, 1]],
   
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8  
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],  # 24
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 29-P4/16  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 37
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 42-P5/32  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 50
  ]
 
# yolov7 head
head:
  [[-1, 1, SPPCSPC, [512]], # 51
  
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [37, 1, Conv, [256, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 63
   
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [24, 1, Conv, [128, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1]], # 75
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 63], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 88
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3, 51], 1, Concat, [1]],
   
   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]], # 101
   
   [75, 1, RepConv, [256, 3, 1]],
   [88, 1, RepConv, [512, 3, 1]],
   [101, 1, RepConv, [1024, 3, 1]],
 
   [[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

如果对YOLOv7开发构建自己的个性化目标检测系统有疑问的可以参考前文的超详细教程:
《YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程》

在实验阶段保持完全相同的参数设置,等待全部训练完成之后来从多个指标的维度来进行综合的对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss走势】

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

综合实验对比分析结果来看:tiny系列的模型效果最差,而l和x系列的模型则达到了相近的水准,这里考虑参数量的话最终选择使用l系列的模型来作为最终的推理模型。

接下来我们详细看下yolov7模型的结果详情。

【离线推理实例】

【Batch实例】

【PR曲线】

【Precision曲线】

【Recall曲线】

【训练可视化】

【混淆矩阵】

感兴趣的话都可以自行动手尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1576063.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++:红黑树封装实现map、set

一、map、set的底层结构 前面对map、set等树形结构的关联式容器进行了简单的介绍,了解到map、set都是由红黑树封装实现的。红黑树是一种由二叉搜索树进行平衡处理后的平衡树,其查找、插入、删除等操作的时间复杂度为O(logn),详情请参考数据结…

neo4j图数据库下载安装配置

neo4j下载地址Index of /doc/neo4j/3.5.8/ 1.说明:jdk 1.8 版本对应的 neo4j 数据库版本 推荐安装3.X版本 2.配置系统环境变量 3.启动 neo4j.bat console 4.访问

【Lavavel框架】——各目录作用的介绍

👨‍💻个人主页:开发者-曼亿点 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 曼亿点 原创 👨‍💻 收录于专栏&#xff1a…

SQLite 4.9的虚拟表机制(十四)

返回:SQLite—系列文章目录 上一篇:SQLite 4.9的 OS 接口或“VFS”(十三) 下一篇:SQLite—系列文章目录 1. 引言 虚拟表是向打开的 SQLite 数据库连接注册的对象。从SQL语句的角度来看, 虚拟表对象与任何其他…

【c语言】strncpy函数模拟实现

strncpy函数模拟实现 strncpy函数在cplusplus网站中的定义 模拟实现源码 //模拟实现 #include <stdio.h> #include <string.h> #include <assert.h>char* my_strncpy(char* destination, const char* source, size_t num) {assert(destination && so…

C++ | Leetcode C++题解之第16题最接近的三数之和

题目&#xff1a; 题解&#xff1a; class Solution { public:int threeSumClosest(vector<int>& nums, int target) {sort(nums.begin(), nums.end());int n nums.size();int best 1e7;// 根据差值的绝对值来更新答案auto update [&](int cur) {if (abs(cur…

蓝桥杯-单片机组基础14——定时计数器与延时函数2方法实现长短按功能

蓝桥杯单片机组备赛指南请查看 &#xff1a;本专栏第1篇文章 本文章针对蓝桥杯-单片机组比赛开发板所写&#xff0c;代码可直接在比赛开发板上使用。 型号&#xff1a;国信天长4T开发板&#xff08;绿板&#xff09;&#xff0c;芯片&#xff1a;IAP15F2K61S2 &#xff08;使…

Python+Vuecil笔记

Nginx 进入目录: C:\nginx-1.20.2\nginx-1.20.2 start nginx 开始 nginx -s stop 停止 nginx -s quit 退出CSS 通过标签去写css 循环展示数据 JS 点击时执行事件 Django 配置media 在seetings里面修改 STATIC_URL /static/ MEDIA_URL /upload/ MEDIA_ROOT os.pat…

力扣 583. 两个字符串的删除操作

题目来源&#xff1a;https://leetcode.cn/problems/delete-operation-for-two-strings/description/ C题解1&#xff1a;动态规划 寻找word1和word2拥有的公共最长子序列&#xff0c;之后分别对word1和word2进行删除操作&#xff0c;即可使word1和word2相等。 寻找公共最长子…

linux 任务管理器(top, ps),面试考点与面试技巧

图2-1 top命令 RES 表示内存占用。 SHR 表示 share 内存占用. 该视图会自动刷新&#xff0c;按"P"(大写要用 shift) 按照cpu使用率倒排 按 "M"按照内存占用倒排。 图 2-2 top命令开头的几行 top命令开头的几行见图2-2. load average后的三个小数分别表…

Embedding:跨越离散与连续边界——离散数据的连续向量表示及其在深度学习与自然语言处理中的关键角色

Embedding嵌入技术是一种在深度学习、自然语言处理&#xff08;NLP&#xff09;、计算机视觉等领域广泛应用的技术&#xff0c;它主要用于将高维、复杂且离散的原始数据&#xff08;如文本中的词汇、图像中的像素等&#xff09;映射到一个低维、连续且稠密的向量空间中。这些低…

Ubuntu 22.04安装新硬盘并启动时自动挂载

方法一 要在Ubuntu 22.04系统中安装一个新硬盘、对其进行格式化并实现启动时自动挂载&#xff0c;需要按以下步骤操作&#xff1a; 1. 安装硬盘 - 确保你的硬盘正确连接到计算机上&#xff08;涉及硬件安装&#xff09;。 2. 发现新硬盘 - 在系统启动后&#xff0c;打开终端…

机器视觉学习(十二)—— 绘制图形

目录 一、绘制函数参数说明 1.1 cv2.line(&#xff09;绘制直线 1.2 cv2.rectangle&#xff08;&#xff09;绘制矩形 1.3 cv2.circle&#xff08;&#xff09; 绘制圆形 1.4 cv2.ellipse&#xff08;&#xff09;绘制椭圆 1.5 cv2.polylines&#xff08;&#xff09;绘制…

【电路笔记】-逻辑非门

逻辑非门 文章目录 逻辑非门1、概述2、晶体管逻辑非门3、六角施密特反相器逻辑非门是所有逻辑门中最基本的,通常称为反相缓冲器或简称为反相器。 1、概述 反相非门是单输入器件,其输出电平通常为逻辑电平“1”,当其单个输入为逻辑电平“1”时,输出电平变为“低”至逻辑电平…

目标检测——RCNN系列学习(二)Faster RCNN

接着上一篇文章&#xff1a;目标检测——RCNN系列学习(一&#xff09;-CSDN博客 主要内容包含&#xff1a;Faster RCNN 废话不多说。 Faster RCNN [1506.01497] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (arxiv.org)https://arxiv.…

幸运数(蓝桥杯)

该 import java.util.*; public class Main {public static void main(String[] args) {Scanner scannew Scanner(System.in);int cnt0;for(int i1;i<100000000;i) {String si"";int lens.length();if(len%2!0) continue;int sum10; //左边int sum20; //右边fo…

jest单元测试——项目实战

jest单元测试——项目实战 一、纯函数测试二、组件测试三、接口测试四、React Hook测试&#x1f4a5; 其他的疑难杂症另&#xff1a;好用的方法 &#x1f31f; 温故而知新&#xff1a;单元测试工具——JEST 包括&#xff1a;什么是单元测试、jest的基本配置、快照测试、mock函数…

2-django、http、web框架、django及django请求生命周期、路由控制、视图层

1 http 2 web框架 3 django 3.1 django请求生命周期 4 路由控制 5 视图层 1 http #1 http 是什么 #2 http特点 #3 请求协议详情-请求首行---》请求方式&#xff0c;请求地址&#xff0c;请求协议版本-请求头---》key:value形式-referer&#xff1a;上一次访问的地址-user-agen…

特别详细的Spring Cloud 系列教程1:服务注册中心Eureka的启动

Eureka已经被Spring Cloud继承在其子项目spring-cloud-netflix中&#xff0c;搭建Eureka Server的方式还是非常简单的。只需要通过一个独立的maven工程即可搭建Eureka Server。 我们引入spring cloud的依赖和eureka的依赖。 <dependencyManagement><!-- spring clo…

软件无线电系列——CIC滤波器

本节目录 一、CIC滤波器 1、积分器 2、梳状滤波器 3、CIC滤波器的特性 二、单级CIC和多级CIC滤波器本节内容 一、CIC滤波器 CIC滤波器&#xff0c;英文名称为Cascade Integrator Comb&#xff0c;中文全称为级联积分梳状滤波器&#xff0c;从字面来看就是将积分器与梳状滤波器…