Golang单元测试和压力测试

news2025/1/24 8:35:58

一.单元测试

        1.1 go test工具

        go语言中的测试依赖go test命令。编写测试代码和编写普通的Go代码过程类似,并不需要学习新的语法,规则和工具。

        go test命令是一个按照一定约定和组织的测试代码的驱动程序。在包目录内,所有以_test.go为后缀名的源代码文件都是go test测试的一部分,不会被go build编译到最终可执行文件中。

        在*_test.go文件中有三种类型的函数,单元测试函数,基准测试函数和示例函数。

         go test命令会遍历所有的*_test.go文件中符合上述命令规则的函数,然后生成一个临时的main包用于调用相应的测试函数,然后构建并运行,报告测试结果,最后清理测试中生成的临时文件。

        Golang单元测试对文件名和方法名都有很严格的要求:

  • 文件名必须以xx_test.go命名
  • 方法必须是Test[^a-z]开头
  • 方法参数必须是t *testing.T类型
  • 使用go test执行单元测试

go test的参数解读:

  • go test是go语言自带的测试工具,其中包含的是两类,单元测试和性能测试
  • 通过go help test可以看到go test的使用说明。

格式:

go test [-c] [-i] [build flags] [package] [flags for test binary]

参数解读:

-c:编译go test成为可执行二进制文件,但是不运行测试

-i:安装测试包依赖的package,但是不运行测试

build flags:调用go help build,这些都是编译运行过程中需要使用到的参数,一般设置为空。

packages:调用go help packages,这些事关于包的管理,一般设置为空。

关于flags for test binary,调用go help testflag,这些是go test过程中经常使用到的参数

        -test.v:是否输出全部的单元测试用例(不管成功失败),默认没有加上,所以只输出失败的单元测试用例。

        -test.run pattern: 只跑哪些单元测试用例
        -test.bench patten: 只跑那些性能测试用例
        -test.benchmem : 是否在性能测试的时候输出内存情况
        -test.benchtime t : 性能测试运行的时间,默认是 1s
        -test.cpuprofile cpu.out : 是否输出 cpu 性能分析文件
        -test.memprofile mem.out : 是否输出内存性能分析文件
        -test.blockprofile block.out : 是否输出内部 goroutine 阻塞的性能分析文件
        -test.memprofilerate n : 内存性能分析的时候有一个分配了多少的时候才打点记录的问题。这 个参数就是设置打点的内存分配间隔,也就是profile 中一个 sample 代表的内存大小。默认是设置为 512 * 1024的。如果你将它设置为 1 ,则每分配一个内存块就会在 profile 中有个打点,那么生成的 profile的 sample 就会非常多。如果你设置为 0 ,那就是不做打点了。 你可以通过设置memprofilerate=1 GOGC=off 来关闭内存回收,并且对每个内存块的分配进行观
察。
        -test.blockprofilerate n: 基本同上,控制的是 goroutine 阻塞时候打点的纳秒数。默认不设 置就相当于-test.blockprofilerate=1 ,每一纳秒都打点记录一下
        -test.parallel n : 性能测试的程序并行 cpu 数,默认等于 GOMAXPROCS
        -test.timeout t : 如果测试用例运行时间超过 t ,则抛出 panic
        -test.cpu 1,2,4 : 程序运行在哪些 CPU 上面,使用二进制的 1 所在位代表,和 nginx 的 nginx_worker_cpu_affinity是一个道理
        -test.short : 将那些运行时间较长的测试用例运行时间缩短

目录结构:

        1.2 测试函数

        1.2.1 测试函数格式

        每个测试函数必须导入testing包,测试函数的基本格式如下: 

func TestName(t *testing.T){
    //...
}

         测试函数的名字必须以Test开头,可选的后缀名必须以大写字母开头。举几个例子:

func TestAdd(t *testing.T){...}
func TestSum(t *testing.T){...}
func TestLog(t *testing.T){...}

        其中参数t用于报告测试失败和附加的日志信息。testing.T的拥有的方法如下:

func (c *T) Error(args ...interface{})
func (c *T) Errorf(format string, args ...interface{})
func (c *T) Fail()
func (c *T) FailNow()
func (c *T) Failed() bool
func (c *T) Fatal(args ...interface{})
func (c *T) Fatalf(format string, args ...interface{})
func (c *T) Log(args ...interface{})
func (c *T) Logf(format string, args ...interface{})
func (c *T) Name() string
func (t *T) Parallel()
func (t *T) Run(name string, f func(t *T)) bool
func (c *T) Skip(args ...interface{})
func (c *T) SkipNow()
func (c *T) Skipf(format string, args ...interface{})
func (c *T) Skipped() bool

         1.2.2 测试函数示例

        一个软件程序由很多单元组件构成。单元组件可以是函数,结构体,方法和最终用户可能依赖的东西。总之我们需要确保这些组件是能够正常运行。单元测试是一些利用各种方法测试单元组件的程序,它会将结果与预期输出进行比较。

        目录结构:

        split.go代码:

package split

import "strings"

func Split(s, seq string) (res []string) {
	i := strings.Index(s, seq)

	for i > -1 {
		res = append(res, s[:i])
		s = s[i+1:]
		i = strings.Index(s, seq)
	}

	res = append(res, s)
	return
}

        split_test.go代码:

package split

import (
	"reflect"
	"testing"
)

func TestSplit(t *testing.T) { //测试函数必须以Test开头,必须接收一个*testing.T的类型参数
	got := Split("a:b:c", ":") //测试程序的输出

	want := []string{"a", "b", "c"} //期待的结果

	if !reflect.DeepEqual(got, want) { //slice不能进行比较,借助反射包中的方法进行比较
		t.Errorf("excepted:%#v, got:%#v", want, got)
	}
}

        执行go test:

        再增加一个测试用例:

func TestMoreSplit(t *testing.T) {
	got := Split("abcd", "bc")
	want := []string{"a", "d"}

	if !reflect.DeepEqual(got, want) {
		t.Errorf("excepted:%#v, got:%#v", want, got)
	}
}

        输入go test和go test -v查看测试函数和运行时间:

        还可以在go test命令后面加-run参数,它对应一个正则表达式,只有函数名匹配上的测试函数才会被go test命令执行。

        代码中失败的原因是:在Split函数并没有考虑seq为多字符的情况,下面为修复之后的代码:

package split

import "strings"

func Split(s, seq string) (res []string) {
	i := strings.Index(s, seq)

	for i > -1 {
		res = append(res, s[:i])
		s = s[i+len(seq):]
		i = strings.Index(s, seq)
	}

	res = append(res, s)
	return
}

        1.2.3 测试组

package split

import (
	"reflect"
	"testing"
)

func TestSplit(t *testing.T) {
	//定义测试用例类型
	type test struct {
		input  string
		seq    string
		output []string
	}
	//定义存储测试用例的切片
	tests := []test{
		{"a:b:c", ":", []string{"a", "b", "c"}},
		{"a:b:c", ",", []string{"a:b:c"}},
		{"abcd", "bc", []string{"a", "d"}},
		{"枯藤老树昏鸦", "老", []string{"枯藤", "树昏鸦"}},
	}

	//遍历切片,逐一执行测试用例
	for i, v := range tests {
		res := Split(v.input, v.seq)
		if !reflect.DeepEqual(v.output, res) {
			t.Errorf("index:%#v, excepted:%#v, got:%#v", i, v.output, v.input)
		}
	}
}

        1.2.4 子测试

        如果测试用例比较多的时候,我们没有办法一眼看出具体是哪一个测试用例失败了,我们可以使用下面的解决办法,使用testing.T的Run方法。

package split

import (
	"reflect"
	"testing"
)

func TestSplit(t *testing.T) {
	//定义测试用例类型
	type test struct {
		input  string
		seq    string
		output []string
	}
	tests := map[string]test{ //测试用例使用map储存
		"simple":      {"a:b:c", ":", []string{"a", "b", "c"}},
		"wrong seq":   {"a:b:c", ",", []string{"a:b:c"}},
		"more seq":    {"abcd", "bc", []string{"a", "d"}},
		"leading seq": {"枯藤老树昏鸦", "老", []string{"枯藤", "树昏鸦"}},
	}

	for n, v := range tests {
		t.Run(n, func(t *testing.T) { //使用t.Runc()执行子测试
			res := Split(v.input, v.seq)
			if !reflect.DeepEqual(v.output, res) {
				t.Errorf("excepted:%#v, got:%#v", v.output, v.input)
			}
		})
	}
}

        1.2.5 测试覆盖率

         测试覆盖率是你的代码被测试套件的百分比,通常我们使用的是语句的覆盖率。也就是在测试中,至少被运行一次的代码占总代码的比例。

        Go提供内置功能来检查你的代码的覆盖率。我们可以使用go test -cover来查看测试覆盖率。

例子还是上面的例子:

        从上面的结果可以看到我们的测试用例覆盖了100%的代码。

        Go还提供了一个额外的-coverprofile参数,用来将覆盖率相关的记录信息输出到一个文件。例如:

        上面的命令会将覆盖率相关的信息输出到当前文件夹下面的c.out文件中,然后我们执行go tool cover -html=c.out,使用cover工具来处理生成的记录信息,该命令会打开本地的浏览器窗口生成一个HTML报告。

二.压力测试

        2.1 基准测试

        基准测试就是在一定的工作负载之下检测程序性能的一种方法。基准测试的基本格式如下:

func BenchmarkName(b *testing.B){
    //...
}

        基准测试以Benchmark为前缀,需要一个*testing.B类型的参数b,基准测试必须要执行b.N次,这样测试才有对照性,b.N的值是系统根据实际情况去调整的,从而保证测试的稳定性。

        testing.B拥有的方法如下:

func (c *B) Error(args ...interface{})
func (c *B) Errorf(format string, args ...interface{})
func (c *B) Fail()
func (c *B) FailNow()
func (c *B) Failed() bool
func (c *B) Fatal(args ...interface{})
func (c *B) Fatalf(format string, args ...interface{})
func (c *B) Log(args ...interface{})
func (c *B) Logf(format string, args ...interface{})
func (c *B) Name() string
func (b *B) ReportAllocs()
func (b *B) ResetTimer()
func (b *B) Run(name string, f func(b *B)) bool
func (b *B) RunParallel(body func(*PB))
func (b *B) SetBytes(n int64)
func (b *B) SetParallelism(p int)
func (c *B) Skip(args ...interface{})
func (c *B) SkipNow()
func (c *B) Skipf(format string, args ...interface{})
func (c *B) Skipped() bool
func (b *B) StartTimer()
func (b *B) StopTimer()

        2.2 基准测试示例

        我们为Split包中的Split函数编写基准测试如下:

func BenchmarkSplit(b *testing.B) {
	for i := 0; i < b.N; i++ {
		Split("枯藤老树昏鸦", "老")
	}
}

        基准测试并不会默认执行,需要增加-bench参数,所以我们通过执行go test -bench=Split命令执行基准测试:

        其中BenchmarkSplit-4表示对Split函数进行基准测试,数字4表示GOMAXPROCS的值,这个对于并发基准测试很重要。8877892和128.4ns/op表示每次调用Split函数耗时128.4ns,这个结果是8877892次调用的平均值。

        我们也可以加上-banchmem参数,来获取内存分配的统计数据。

        其中,48B/op表示每次操作内存分配了48字节,2allocs/op则表示每次操作进行了2次内存分配。

        我们将Split函数优化如下: 提前使用make函数将res初始化为一个容量足够大的切片,而不再像之前一样通过调用append函数来追加,append可能会导致扩容,内存重新分配。我们来看一下性能会有多少提升。

func Split(s, seq string) (res []string) {
	res = make([]string, 0, strings.Count(s, seq)+1) //提前分配好内存
	i := strings.Index(s, seq)
	for i > -1 {
		res = append(res, s[:i])
		s = s[i+len(seq):]
		i = strings.Index(s, seq)
	}

	res = append(res, s)
	return
}

        2.3 性能比较函数

        上面的基准测试只能得到给定操作的绝对耗时,但是在很多性能问题是发生在两个不同的操作之间的相对耗时。比如:同一个函数处理1000个元素的耗时与处理1万甚至100万个元素耗时差别是多少?再或者对于同一个任务究竟使用哪种算法性能最佳?我们通常需要对两个不同的算法的实现使用相同的输入来进行基准比较测试。

        性能比较函数通常是一个带有参数的函数,被多个不同的Brenchmark函数传入不同的值来调用。举个例子:

func brenchmark(b *testing.B, size int){/*...*/}
func Brenchmark10(b *testing.B){ brenchmark(b, 10) }
func Brenchmark100(b *testing.B){ brenchmark(b, 100) }
func Brenchmark1000(b *testing.B){ brenchmark(b, 1000) }

         例如:我们编写一个斐波那契函数:

package fib

func Fib(n int) int {
	if n < 2 {
		return n
	}

	return Fib(n-1) + Fib(n-2)
}

        性能比较函数:

        运行基准测试:

                需要注意的是,默认情况下,每个基准测试至少运行一秒(即总共时间得字少大于等于1秒),如果Benchmark函数返回时,没有到1秒,则b.N的值会按1,2,5,10,20...增加,并且函数再次运行。

        最终BenchmarkFib40只运行了两次,没运行的平均时间只有不到1秒。像这种情况我们应该使用-brenchtime标志增加最小基准时间,以产生更准确的结果。

         这样次数增加到了42次,结果就会更加准确了。

使用性能比较函数做测试的时候一个容易犯的错误是把b.N作为输入的大小,下面两个例子都是错误示范:

//错误示范1
func BenchmarkFibWrong1(b *testing.B){
    for i := 0; i < b.N; i++{
        Fib(i)
    }
}

//错误释放2
func BenchmarkFibWrong2(c *testing.B){
    Fib(b.N)
}

         2.4 重置时间

        b.ResetTimer之前的处理不会放到执行时间里,也不会输出到报告中,所以可以在之前做一些不计划走位测试报告的操作。

func BenchmarkSplit(b *testing.B) {
	time.Sleep(5 * time.Second) //做一些耗时的无关操作
	b.ResetTimer()              //重置计时器
	for i := 0; i < b.N; i++ {
		Split("枯藤老树昏鸦", "老")
	}
}

        2.5 并行测试

        func (b B) RunParallel (body func(PB))会以并行的方式执行给定的基准测试。

        RunParallel会创建出多个goroutine,并将b.N分配给这些goroutine执行,其中goroutine数量的默认值为GOMAXPROCS。用户如果想要增加非CPU受限(non-CPU-bound)基准测试的并行性,那么可以在RunParallel之前调用SetParallelism。RunParallel通常会与-cpu标志一同使用。 

func BenchmarkSplitParallel(b *testing.B) {
	//b.SetParallelism(1) 设置使用CPU数量
	b.RunParallel(func(pb *testing.PB) {
		for pb.Next() { //Next报告是否还有更多的迭代要执行。
			Split("枯藤老树昏鸦", "老")
		}
	})
}

        还可以通过在测试命令后面加-cpu参数如go test -bench=. -cpu 1来指定使用的CPU数量。

          2.6 Setup和TearDown

        测试程序有时需要在测试之前进行额外的设置(setup)或在测试之后进行拆卸(teardown)。

        2.6.1 TestMain

        通过在*_test.go文件中定义TestMain函数可以在测试之前进行额外的设置(setup)或在测试之后进行拆卸(teardown)操作。

        如果测试文件包含函数:func TestMain(m *testing.M)那么生成测试会先调用TestMain(m),然后再运行具体测试。TestMain运行在主goroutine中,可以在调用m.Run前后做任何设置(setup)和拆卸(teardown)。退出测试的时候应该使用m.Run的返回值作为参数调用的os.Exit。

        一个TestMain来设置Setup和TearDown的示例如下:

func TestMain(m *testing.M) {
	fmt.Println("write setup code here ...") //测试之前做的一些设置
	//如果TestMain使用了flags,这里应该加上flags.Parse()
	retCode := m.Run()                          //执行测试
	fmt.Println("write teardown code here ...") //测试之后的拆卸工作
	os.Exit(retCode)                            //退出测试
}

         需要注意的是:在调用TestMain时,flag.Parse并没有被调用。所以如果TestMain依赖于(命令行参数)command-line标志(包括testing包的标记),则应该先调用flag.Parse。

        2.6.2 子测试的Setup与Teardown

        有时我们可能需要为每个测试集设置Setup和Teardown,也有可能需要为每个子测试设置Setup与Teardown。下面我们定义两个工具函数如下:

// 测试集的setup和teardown
func setupTestCase(t *testing.T) func(t *testing.T) {
	t.Log("如果需要在此执行:测试之前的setup")
	return func(t *testing.T) {
		t.Log("如果需要在此执行:测试之前的teardown")
	}
}

// 子测试的setup和teardown
func setupSubTest(t *testing.T) func(t *testing.T) {
	t.Log("如果需要在此执行:子测试之前的setup")
	return func(t *testing.T) {
		t.Log("如果需要在此执行:子测试之前的teardown")
	}
}

         使用方式:

func TestSplit(t *testing.T) {
	//定义测试用例类型
	type test struct {
		input  string
		seq    string
		output []string
	}
	tests := map[string]test{ //测试用例使用map储存
		"simple":      {"a:b:c", ":", []string{"a", "b", "c"}},
		"wrong seq":   {"a:b:c", ",", []string{"a:b:c"}},
		"more seq":    {"abcd", "bc", []string{"a", "d"}},
		"leading seq": {"枯藤老树昏鸦", "老", []string{"枯藤", "树昏鸦"}},
	}

	teardownTestCase := setupTestCase(t) //测试之前执行setup操作
	defer teardownTestCase(t)            //测试之后执行testsown操作
	//遍历切片,逐一执行测试用例
	for n, v := range tests {
		teardownSubTest := setupSubTest(t) //子测试之前的setup操作
		defer teardownSubTest(t)           //子测试之后的teardown操作
		t.Run(n, func(t *testing.T) {      //使用t.Runc()执行子测试
			res := Split(v.input, v.seq)
			if !reflect.DeepEqual(v.output, res) {
				t.Errorf("excepted:%#v, got:%#v", v.output, v.input)
			}
		})
	}
}

        测试结果:

三.示例函数

        3.1 示例函数格式

        被go test特殊对待的第三中函数就是示例函数,它们的函数名以Example为前缀。既没有参数也没有返回值。格式如下:

func ExampleName(){
    //...
}

        3.2 示例函数示例

func ExampleSplit() {
	fmt.Println(Split("a:b:c", ":"))
	fmt.Println(Split("枯藤老树昏鸦", "老"))
}

         为你的代码编写示例函数又下面三个用处:

  • 示例函数能够作为文档使用,例如基于web的godoc中能把示例函数与对应的函数或包相关联。
  • 示例函数只要包含了,也可以通过go test运行可执行测试。
    • go test -run Example
  • 示例函数提供了可以直接运行的示例代码,可以直接在golang.org的godoc文档服务器上使用GoPlayground运行实例代码。下图为string.ToUpper函数在Playground的实例函数效果。

 

 

 

 

 

 

         

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1576008.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2.网络编程-HTTP和HTTPS

目录 HTTP介绍 HTTP协议主要组成部分 GET 和 POST有什么区别 常见的 HTTP 状态码有哪些 http状态码100 HTTP1.1 和 HTTP1.0 的区别有哪些 HTTPS 和 HTTP 的区别是什么 HTTP2 和 HTTP1.1 的区别是什么 HTTP3 和 HTTP2 的区别是什么 HTTPS的请求过程 对称加密和非对称…

SVG图标显示

SVG图标显示 1.安装SharpVectors.Wpf包 2.添加引用 xmlns:svgc"http://sharpvectors.codeplex.com/svgc/"3.加载svg文件&#xff0c;生成操作选择资源(Resource) 4.UI界面显示SVG图像 <Button Click"OnSaveFileClick" ToolTip"Save Svg File…

云原生安全当前的挑战与解决办法

云原生安全作为一种新兴的安全理念&#xff0c;不仅解决云计算普及带来的安全问题&#xff0c;更强调以原生的思维构建云上安全建设、部署与应用&#xff0c;推动安全与云计算深度融合。所以现在云原生安全在云安全领域越来受到重视&#xff0c;云安全厂商在这块的投入也是越来…

蓝桥杯—PCF8951

1.整个系统靠SDA和SCL实现完善的全双工数据传输 2.引脚图 AN1为光明电阻 AN3为滑动变阻 A0-A2均接地 时钟线连P20 地址线连P21 实物图 iic总线 谁控制时钟线谁是主设备 时序相关 官方提供的底层驱动代码 /* # I2C代码片段说明1. 本文件夹中提供的驱动代码供参赛选手完成…

Octopus V2:设备端super agent的高级语言模型

论文&#xff1a;Octopus v2: On-device language model for super agent论文地址&#xff1a;https://arxiv.org/abs/2404.01744模型主页&#xff1a;https://huggingface.co/NexaAIDev/Octopus-v2 Octopus-V2-2B Octopus-V2-2B 是一款具有20亿参数的开源先进语言模型&#…

SQL Sever 2008 安装教程

先从官网下载程序&#xff1a;下载地址 打开上述链接后&#xff0c;点击下载按钮。 就会跳出下面这个界面&#xff0c;如果你的电脑是64位的请选择下图中这两个程序。 下载完成后&#xff0c;在电脑磁盘中找到这两个文件&#xff0c;注意安装的顺序&#xff0c;先安装 SQLEXPR…

校园圈子小程序,大学校园圈子,三段交付,源码交付,支持二开

介绍 在当今的数字化时代&#xff0c;校园社交媒体和在线论坛成为了学生交流思想、讨论问题以及分享信息的常用平台。特别是微信小程序&#xff0c;因其便捷性、用户基数庞大等特点&#xff0c;已逐渐成为构建校园社区不可或缺的一部分。以下是基于现有资料的校园小程序帖子发…

蓝桥杯每日一题:杨辉三角形(组合计数)

下面的图形是著名的杨辉三角形&#xff1a; 如果我们按从上到下、从左到右的顺序把所有数排成一列&#xff0c;可以得到如下数列&#xff1a; 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, ... 给定一个正整数 N&#xff0c;请你输出数列中第一次出现 N是在第几个数&#x…

LeetCode-74. 搜索二维矩阵【数组 二分查找 矩阵】

LeetCode-74. 搜索二维矩阵【数组 二分查找 矩阵】 题目描述&#xff1a;解题思路一&#xff1a;先二分查找行&#xff0c;再二分查找列。解题思路二&#xff1a;暴力遍历&#xff0c;也能过。解题思路三&#xff1a;用python的in。 题目描述&#xff1a; 给你一个满足下述两条…

HAL STM32 定时器PWM DMA输出方式

HAL STM32 定时器PWM DMA输出方式 &#x1f9e8;遗留问题&#xff1a;当配置RCR重复计数器&#xff0c;配置为2时&#xff0c;在定义了3组PWM参数情况下&#xff0c;只能输出第二组参数的PWM波形。&#xff08;HAL_TIM_PWM_Start_DMA(&htim1, TIM_CHANNEL_1, aCCValue_Buff…

实时计算平台设计方案:913-基于100G光口的DSP+FPGA实时计算平台

基于100G光口的DSPFPGA实时计算平台 一、产品概述 基于以太网接口的实时数据智能计算一直应用于互联网、网络安全、大数据交换的场景。以DSPFPGA的方案&#xff0c;体现了基于硬件计算的独特性能&#xff0c;区别于X86GPU的计算方案&#xff0c;保留了高带宽特性&…

Python学习笔记——heapq

堆排序 思路 堆排序思路是&#xff1a; 将数组以二叉树的形式分析&#xff0c;令根节点索引值为0&#xff0c;索引值为index的节点&#xff0c;子节点索引值分别为index*21、index*22&#xff1b;对二叉树进行维护&#xff0c;使得每个非叶子节点的值&#xff0c;都大于或者…

Android匿名共享内存(Ashmem)

在Android中我们熟知的IPC方式有Socket、文件、ContentProvider、Binder、共享内存。其中共享内存的效率最高&#xff0c;可以做到0拷贝&#xff0c;在跨进程进行大数据传输&#xff0c;日志收集等场景下非常有用。共享内存是Linux自带的一种IPC机制&#xff0c;Android直接使用…

Autodesk AutoCAD 2025 (macOS, Windows) - 自动计算机辅助设计软件

Autodesk AutoCAD 2025 (macOS, Windows) - 自动计算机辅助设计软件 AutoCAD 2024 开始原生支持 Apple Silicon&#xff0c;性能提升至 2 倍 请访问原文链接&#xff1a;https://sysin.org/blog/autodesk-autocad/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处…

Elastic AI Assistant for Observability 和 Microsoft Azure OpenAI 入门

作者&#xff1a;来自 Elastic Jonathan Simon 最近&#xff0c;Elastic 宣布 AI 观测助手现已正式向所有 Elastic 用户开放。该 AI 观测助手为 Elastic 观测提供了一种新工具&#xff0c;提供了大型语言模型&#xff08;LLM&#xff09;连接的聊天和上下文洞察&#xff0c;以解…

Windows11配置VUE开发环境

目录 一、按照nodejs二、命令安装npm cache clean --forcenpm install -g vue/clinpm install npm -gnpm install webpacknpm install vue-cli -g与npm install -g vue/cli区别npm install -g cnpm --registryhttps://registry.npm.taobao.orgnpm i yarn -g --verbosenpm i -g …

开源数据湖iceberg, hudi ,delta lake, paimon对比分析

Iceberg, Hudi, Delta Lake和Paimon都是用于大数据湖(Data Lake)或数据仓库(Data Warehouse)中数据管理和处理的工具或框架,但它们在设计、功能和适用场景上有所不同。 Iceberg: Iceberg是用于大型分析表的高性能格式。Iceberg将SQL表的可靠性和简易性带入到大数据领域,同…

性能分析-docker知识

docker的相关概念 docker是一个做系统虚拟化的软件&#xff0c;跟vmware类似&#xff0c;虚拟出来的也是操作系统。我们现在在企业中&#xff0c; 使用docker虚拟出来的系统&#xff0c;大多都是linux系统。 docker镜像image&#xff1a;就是虚拟一个docker容器需要的操作系统…

Python爬虫:为什么你爬取不到网页数据

目录 前言 一、网络请求被拒绝 二、数据是通过JavaScript加载的 三、需要进行登录 四、网站反爬虫策略 五、网站结构变更 总结 前言 作为一名开发者&#xff0c;使用Python编写爬虫程序是一项常见的任务。爬虫程序的目的是收集互联网上的数据&#xff0c;并将其保存或使…

C# wpf 嵌入外部程序

WPF Hwnd窗口互操作系列 第一章 嵌入Hwnd窗口 第二章 嵌入WinForm控件 第三章 嵌入WPF控件 第四章 嵌入外部程序&#xff08;本章&#xff09; 第五章 底部嵌入HwndHost 文章目录 WPF Hwnd窗口互操作系列前言一、如何实现&#xff1f;1、定义属性2、进程嵌入&#xff08;1&…