分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测

news2024/11/17 14:49:43

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测

目录

    • 分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测
      • 分类效果
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测(完整源码和数据),优化参数为,优化RBF 核函数gam和sig,运行环境为Matlab2018及以上。
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换excel数据就可以用;
3.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式资源处直接下载Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机数据分类预测(完整源码和数据)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集%
P_train = res(1: 250, 1: 12)';
T_train = res(1: 250, 13)';
M = size(P_train, 2);

P_test = res(251: end, 1: 12)';
T_test = res(251: end, 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
t_train = T_train;
t_test  = T_test;

%% LS参数设置
type        = 'c';             % 模型类型 分类
kernel_type = 'RBF_kernel';    % 线性核函数
codefct     = 'code_OneVsOne'; % 一对一编码分类
fun = @getObjValue;  % 目标函数
dim = 2;             % 优化参数个数
ub  = [300, 300];  % 优化参数目标上限
lb  = [1, 1];   % 优化参数目标下限

pop = 8;             % 数量
Max_iteration = 20; % 最大迭代次数   


c = Best_pos(1);  
g = Best_pos(2);

%% 编码
[t_train,codebook,old_codebook] = code(t_train,codefct);

%% 建立模型
model = initlssvm(p_train,t_train,type,c,g,kernel_type,codefct); %SSA

%% 训练模型
model = trainlssvm(model);

%% 测试模型
t_sim1 = simlssvm(model,p_train);
t_sim2 = simlssvm(model,p_test); 



T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;

%% 优化曲线
figure
plot(curve, 'linewidth',1.5);
title('GWO-LSSVM')
xlabel('The number of iterations')
ylabel('Fitness')
grid on;
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', 'GWO-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', 'GWO-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid

%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
    
figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1574678.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一文彻底搞懂JAVA 异常分类及处理

文章目录 1. 概念2. 异常分类3. 异常的处理方式4. throw 和 throws 的区别 1. 概念 如果某个方法不能按照正常的途径完成任务,就可以通过另一种路径退出方法。在这种情况下会抛出一个封装了错误信息的对象。此时,这个方法会立刻退出同时不返回任何值。另…

蓝桥杯第十四届C++C组

三国游戏 题目描述 小蓝正在玩一款游戏。游戏中魏蜀吴三个国家各自拥有一定数量的士兵X, Y, Z (一开始可以认为都为 0 )。游戏有 n 个可能会发生的事件,每个事件之间相互独立且最多只会发生一次,当第 i 个事件发生时会分别让 X, Y, Z 增加Ai , Bi ,Ci …

【1】初识 Python

【1】初识 Python 1、编程语言(1) 语言(2) 编程语言(3) 如何利用编程语言与计算机交流(4) 常见的编程语言(5) 语法 2、Python 简介(1) 什么是 Python(2) Python 能做什么(3) Python 的由来(4) Python的特点① 语法精简② 生态好,开发效率高③ Python开发初体验&…

全国计算机等级考试三级Linux应用与开发技术考试-习题汇总

https://blog.csdn.net/qq_42025798/article/details/119155696 3.第1章-计算机体系结构与操作系统-练习题-简答题 https://blog.csdn.net/qq_42025798/article/details/119186151 4.第1章-计算机体系结构与操作系统-练习题-填空题 https://blog.csdn.net/qq_42025798/article/…

风险模型总结

系统性风险 系统性风险(Systematic Risk)微观层面的定义由夏普(William Sharpe)在资本资产定价模型(CAPM)中首次提出,即资本市场中存在的不能通过分散投资予以消除的风险 模型也会带来风险 详…

xhadmin多应用Saas框架和FastAdmin有什么区别?

xhadmin是什么? xhadmin 是一套基于最新技术的研发的多应用 Saas 框架,支持在线升级和安装模块及模板,拥有良好的开发框架、成熟稳定的技术解决方案、提供丰富的扩展功能。为开发者赋能,助力企业发展、国家富强,致力于…

mac老版本如何升级到最新版本

mac老版本如何升级到最新版本 老macbook升级新版本(Big sur、Monterey) 首先介绍我的电脑的机型及情况: 2015年初的MacBook Air 处理器是1.6Hz 双核Interl Core i5 内存4G 老版本只能升到10.13 想要升到最高版本的原因:想要注册…

# Set rootfs type, including ext2 ext4 squashfs export RK_ROOTFS_TYPE=ext4

ext2、ext4和squashfs是Linux系统中常见的几种文件系统类型,每种文件系统都有其特点和用途: ext2 (Second Extended Filesystem) 是Linux中较早使用的文件系统。它不支持日志功能,因此在系统意外崩溃或断电后的恢复时间可能会比较长&#xff…

SVPWM原理

SVPWM原理 前言 SVPWM的基本介绍 SVPWM:着眼于使形成的磁链轨迹跟踪由理想三相平衡正弦波电压源供电时所形成的基准磁链圆优点主要有: (1) SVPWM优化谐波程度比较高,消除谐波效果要比SPWM好,实现容易,并且可以提高电压利用率。 (2) SVPWM比较适合于数字化控制系统。

Tesseract 安装与配置及验证码识别

Tesseract 安装与配置 Tesseract 的使用,需要环境的支持,以实现简单的转换和训练。 1.环境 python版本:3.8.3 (python2.7或3以上) 操作系统:windows系统 2.Python安装 详见:Miniconda的…

青蛙跳杯子【蓝桥杯】/bfs

青蛙跳杯子 bfs 思路:刚开始用的是dfs,但是不太行,DFS 可能会导致搜索深度过深,增加了时间复杂度,BFS 适合求解最短路径问题,BFS 在搜索过程中,首先访问距离初始节点最近的节点,因此…

基于VUE的电影交流平台的设计与实现

摘 要 伴随着信息科技和互联网科技的迅猛发展,人们的消费重心随着生活水平的提高逐渐地转移到了精神层次,而电影则是其中之一。以前电影交流采用面对面交流的方法,局限了电影讨论交流的范围和方式。本系统是一个基于VUE框架,使用…

Peter算法小课堂—线性dp

今天,你读完这篇文章,普及组的动态规划已经可以秒了。 最长公共子序列 求两个数列的最长公共子序列(Longest Common Subsequence,LCS)的长度。 数列 X 和 Y 的最长公共子序列 Z,是指 Z 既是 X 的子序列&…

在实体类中使用JSONObject对象

有时候我们的业务需求可能字段是json格式,这个时候我们的实体类就对应的也应该是json格式,需要使用到JSONObject这个对象,但是可能会使用不了这个对象,那接下来我将简单介绍如何使用这个对象。 以下为我的实体类中的某个字段&…

leetcode.707. 设计链表

题目 题意: 在链表类中实现这些功能: get(index):获取链表中第 index 个节点的值。如果索引无效,则返回-1。 addAtHead(val):在链表的第一个元素之前添加一个值为 val 的节点。插入后,新节点将成为链表的…

乐健体育刷分----AI运动的站姿风车

一.前情提要 1.本文仅作学习参考不得用于其他不当途径,若有问题后果自负 二.操作 1.打开乐健体育 2.点击AI运动,找到站姿风车 3.摄像头对准以下图片,拖动图片或保持不动均可 (站姿风车2组及以上效果更佳)

unity学习(82)——profiler 限制帧率

实际测试发现当玩家个数增加时,客户端明显变的很卡,想知道为什么变卡了! 1.只有玩家自己的时候 2.两个时候感觉脚本的工作量增大了 拖了一会直接炸了!(数据包积压把内存搞炸,我第一次见) 3.我觉…

MySQL复制拓扑2

文章目录 主要内容一.配置基本复制结构1.分别在三台主机上停止mysqld服务,并对状态进行确认:代码如下(示例): 2.对三个MySQL服务器的配置文件分别进行编辑,在[mysqld] 选项组中添加以下红色条目:3.在数据目…

金融中的数学模型

平稳时间序列 时间序列的基本统计特性,如均值、方差和自相关等,在时间上不随时间的推移而发生显著的变化。 平稳时间序列通常具有以下特征: 均值不随时间变化:序列的均值在时间上保持恒定。方差不随时间变化:序列的…

Mysql密码修改问题

docker安装mysql,直接拉取镜像,挂载关键目录即可启动,默认3306端口。此时无法直接连接,需要配置密码。docker进入mysql容器中 docker exec -it mysql bash #mysq是容器名称,也可以用容器id通过修改mysql的配置进行免密…