AIGC实战——ProGAN(Progressive Growing Generative Adversarial Network)

news2025/1/11 8:01:27

AIGC实战——ProGAN

    • 0. 前言
    • 1. ProGAN
    • 2. 渐进式训练
    • 3. 其他技术
      • 3.1 小批标准差
      • 3.2 均等学习率
      • 3.3 逐像素归一化
    • 4. 图像生成
    • 小结
    • 系列链接

0. 前言

我们已经学习了使用生成对抗网络 (Generative Adversarial Network, GAN) 解决各种图像生成任务。GAN 的模型架构和训练过程具有很高的灵活性,通过改进 GAN 架构设计和训练过程,研究人员提出了多种不同的网络架构,本节中,我们将介绍 ProGAN (Progressive Growing Generative Adversarial Network) 架构。

1. ProGAN

ProGAN (Progressive Growing Generative Adversarial Network )是由 NVIDIA2017 年提出的生成对抗网络 (Generative Adversarial Network, GAN) 模型,旨在提高 GAN 训练的速度和稳定性。在 ProGAN 中,并不直接对高分辨率图像进行训练,而是首先在低分辨率图像(例如 4 × 4 像素的图像)上训练生成器和判别器,然后在整个训练过程中逐渐增加网络层数以提高分辨率。需要注意的是,训练 ProGAN 需要大量的计算资源。

2. 渐进式训练

ProGAN 同样需要构建两个独立的网络,生成器和判别器,在训练过程中它们交替训练。
在普通 GAN 中,生成器始终输出高分辨率图像,即使在训练的早期阶段也是如此。但这种策略可能并非最优选择,生成器可能在训练的早期阶段很难学习到复杂特征。首先训练一个轻量级的 GAN 来生成准确的低分辨率图像,然后逐渐增加分辨率,这就是渐进式训练 (progressive training) 的核心思想。ProGAN 通过多个阶段进行训练,使用插值方法将训练集中图像尺寸缩放到 4 × 4 作为初始阶段,如下图所示。

渐进式训练

首先训练生成器将潜在输入噪声向量z(例如,长度为 512 )转换为形状为 4 × 4 × 3 的图像。相应的判别器将需要将尺寸为 4 × 4 × 3 的输入图像转换为标量预测,第一步中网络架构如下图所示。

网络架构

生成器中的蓝色框表示将一组特征图转换为 RGB 图像 (toRGB) 的卷积层,判别器中的蓝色框表示将 RGB 图像转换为一组特征图 (fromRGB) 的卷积层。
在原始 ProGAN 模型中,使用 80 万张图像训练这两个网络。接下来,我们需要了解如何扩展生成器和判别器以处理 8 × 8 像素的图像。
为了扩展生成器和判别器,我们需要混合使用其他神经网络层,可以分为过渡 (transition) 和稳定 (stabilization) 两个阶段。

网络架构

在过渡阶段,生成器会在现有的网络中附加新的上采样和卷积层,并使用残差连接来传递已经过训练的 toRGB 层的输出。需要注意的是,新的网络层最初使用参数 α α α 进行掩码处理,该参数在过渡阶段逐渐从 0 增加到 1,以便允许更多的新 toRGB 输出通过,减少现有 toRGB 层的输出。这是为了避免在添加新层时对网络造成冲击。
最终,旧的 toRGB 层输出被完全掩码,网络进入稳定阶段,在这一阶段,网络可以进一步调整输出,而不需要经过旧的 toRGB 层的输出。
鉴别器使用类似的过程,如下图所示。需要在输入图像之后,添加新的下采样和卷积层。现有的fromRGB层通过残差连接相连,并在过渡阶段随着新层的添加逐渐被淘汰,稳定阶段允许鉴别器使用新层进行微调。

模型架构

需要注意的是,即使网络是渐进训练的,也不会冻结任何网络层,在整个训练过程中,所有网络层都保持可训练状态。
ProGAN 中图像尺寸从 4 × 4 开始逐渐增长到 8 × 816 × 1632 × 32,直到 1,024 × 1,024,如下图所示。

整体架构

生成器和鉴别器的整体结构如下图所示。

模型架构

3. 其他技术

除了渐进训练外,ProGAN 还使用了包括小批标准差、均等学习率和逐像素归一化等技术。

3.1 小批标准差

小批标准差(Minibatch Standard Deviation)可以用于增加样本的多样性和减少模式崩溃的问题。在传统的 GAN 中,生成器网络接收一个随机噪声向量作为输入,并生成相应的合成样本。然而,这种方法存在一个问题,即生成的样本可能会过于相似,缺乏多样性。这是因为生成器通过学习大量样本的平均特征来生成图像,导致样本之间缺乏差异。
为了解决这个问题,小批标准差技术引入了一种新的特征向量计算方法。具体而言,它在生成器网络的某一层中计算生成样本的特征向量,并在训练过程中使用这些特征向量的标准差作为一个额外的特征。这个标准差可以理解为表示一小批(minibatch)样本之间的差异程度。
通过引入小批标准差,判别器网络不仅可以评估生成样本与真实样本之间的差异,还可以考虑生成样本之间的多样性。这使得生成器更倾向于生成多样性更高的样本,避免生成过于相似的输出。
小批标准差技术对于解决模式崩溃问题也是有效的。通过使用小批标准差,生成器可以更好地学习到数据集的整体分布,避免陷入单一模式。

3.2 均等学习率

均等学习率 (Equalized Learning Rates) 是一种用于训练神经网络的技术,旨在解决传统神经网络中的权重初始化问题。传统的神经网络在权重初始化时通常使用高斯分布或均匀分布随机初始化,这通常有助于提高训练过程的稳定性,但这种方法缺乏可解释性和普适性,导致网络可能出现梯度爆炸、梯度消失等问题。
AdamRMSProp 等优化器会规范化每个权重的梯度更新,使得更新的大小与权重的尺度(大小)无关。然而,这意味着动态范围较大的权重(即,输入较少的层)比动态范围较小的权重(即,输入较多的层)调整所需的时间相对较长。这会导致 ProGAN 中的生成器和判别器不同层的训练速度不平衡,因此需要使用均等学习率来解决这个问题。
均等学习率利用了批归一化的基本原理,在每一层的输入上动态地归一化权重,从而使每一层的输出具有相似的数量级。在实际应用中,通常通过将每一层的权重乘以一个标准化因子来实现。这个标准化因子可以根据每一层的权重大小和输入维度自适应地计算,从而保证每一层的权重归一化后具有相似的数量级。
除了权重归一化之外,均等学习率还通过缩放每一层的学习率来实现更加稳定的优化。在传统神经网络中,学习率通常是固定的,并在每次训练迭代中应用。然而,在使用均等学习率时,学习率会根据每一层的权重缩放,从而避免过度更新较小的权重(由于它们具有较大的梯度)或过度更新较大的权重(由于它们具有较小的梯度)。

3.3 逐像素归一化

逐像素归一化 (Pixelwise normalization) 是一种在图像生成任务中常用的技术,旨在提高生成模型的稳定性和样本质量。与传统的批归一化不同,批归一化是对整个批数据进行归一化处理,而逐像素归一化则是将每个像素独立地进行归一化。
在传统的生成模型中,生成器网络通常接收一个随机噪声向量作为输入,并生成一张完整的图像。然而,由于每个像素都是独立的,它们具有不同的分布和范围。这导致生成器在训练过程中可能会过度关注某些像素,而忽略其他像素的贡献,导致生成图像出现不均匀的色彩分布或噪点。
为了解决这个问题,逐像素归一化将每个像素独立地进行归一化处理,使得图像在各个像素上具有相似的分布。具体而言,对于每个像素,逐像素归一化计算该像素在所有样本中的均值和标准差,并将像素的原始值减去均值,然后除以标准差。这样做可以将每个像素的值缩放到接近零均值和单位方差的范围内,使得生成器更容易学习到图像的结构和细节。
逐像素归一化增加了生成器对每个像素的敏感性,并减少了样本之间的差异。这有助于生成器更好地捕捉图像的局部细节和全局结构,提高生成图像的质量和真实度。在逐像素归一化层并不存在可训练的权重。

4. 图像生成

除了 CelebA 数据集外,ProGAN 还是用大规模场景理解 (Large-scale Scene Understanding LSUN) 数据集的图像进行训练,生成的结果样本如下所示,这充分证明了 ProGAN 在图像生成方面的强大性能,并为 StyleGANStyleGAN2 等模型奠定了基础。

生成结果

小结

本节中,详细介绍了 ProGAN 模型的基本架构与训练流程。ProGAN 中首次提出了渐进训练概念,首先在低分辨率图像上训练生成器和判别器,然后在整个训练过程中逐渐增加网络层数以提高分辨率。

系列链接

AIGC实战——生成模型简介
AIGC实战——深度学习 (Deep Learning, DL)
AIGC实战——卷积神经网络(Convolutional Neural Network, CNN)
AIGC实战——自编码器(Autoencoder)
AIGC实战——变分自编码器(Variational Autoencoder, VAE)
AIGC实战——使用变分自编码器生成面部图像
AIGC实战——生成对抗网络(Generative Adversarial Network, GAN)
AIGC实战——WGAN(Wasserstein GAN)
AIGC实战——条件生成对抗网络(Conditional Generative Adversarial Net, CGAN)
AIGC实战——自回归模型(Autoregressive Model)
AIGC实战——改进循环神经网络
AIGC实战——像素卷积神经网络(PixelCNN)
AIGC实战——归一化流模型(Normalizing Flow Model)
AIGC实战——能量模型(Energy-Based Model)
AIGC实战——扩散模型(Diffusion Model)
AIGC实战——GPT(Generative Pre-trained Transformer)
AIGC实战——Transformer模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1573668.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

pytest的时候输出一个F后面跟很多绿色的点解读

使用pytest来测试pyramid和kotti项目,在kotti项目测试的时候,输出一个F后面跟很多绿色的点,是什么意思呢? 原来在使用pytest进行测试时,输出中的“F”代表一个失败的测试(Failed),而…

Spring源码分析(@Configuration)

文章目录 Spring源码分析(Configuration)一、ConfigurationClassPostProcessor1、主要作用和特点2、执行的时机3、BeanFactoryPostProcessor4、BeanDefinitionRegistryPostProcessor5、ConfigurationClassPostProcessor1)postProcessBeanDefi…

ebpf+perfetto实现调度延迟记录与展示

1.背景 需要分析生产环境的调度问题,如线程的调度延迟有多少,在哪些时间点延迟比较明显,影响其调度的主要原因是什么?其次,我们希望可以比较直观的展示调度延迟情况。最好能对接perfetto的UI和后处理,因为perfetto已经用于分析比较多的性能数据,可以和调度数据进行整合.我们…

聚观早报 | 沃尔沃发布一季度全球销量;苹果将举办财报电话会议

聚观早报每日整理最值得关注的行业重点事件,帮助大家及时了解最新行业动态,每日读报,就读聚观365资讯简报。 整理丨Cutie 4月07日消息 沃尔沃发布一季度全球销量 苹果将举办新财报电话会议 荣耀Magic6支持5.5G通信 特斯拉将建最大超级充…

【计算机网络经典面试题】简述 TCP 三次握手和四次挥手的过程

TCP链接 1.三次挥手2.四次挥手3.拓展说说 TCP 2次握手行不行?为什么要3次 1.三次挥手 1)第一次握手:建立连接时,客户端向服务器发送SYN包(seqx),请求建立连接,等待确认 2&#xff09…

基于Springboot的Java学习平台

采用技术 基于Springbootjava学习平台的设计与实现~ 开发语言:Java 数据库:MySQL 技术:SpringBootMyBatis 工具:IDEA/Ecilpse、Navicat、Maven 页面展示效果 系统功能模块 后台管理 用户注册 课程信息 作业信息 资料信息…

【Linux实践室】Linux高级用户管理实战指南:创建与删除用户组操作详解

🌈个人主页:聆风吟_ 🔥系列专栏:Linux实践室、网络奇遇记 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 一. ⛳️任务描述二. ⛳️相关知识2.1 🔔Linux创建用户组命令2.1.1 知识点讲解2.1.2…

MacOS Docker 可视化面板 Portainer

一、简介 Portainer 是一个可视化的容器镜像图形管理工具,使用 Portainer 可以轻松构建、管理和维护Docker 环境。 而且完全免费(portainer-ce 是免费的,portainer-ee 是需要授权的,今天安装的是 portainer-ce 版本)&…

基于51单片机的尾气检测报警器Proteus仿真

地址:https://pan.baidu.com/s/1DBn8A-p6wmP3Zssrrwspyg 提取码:1234 仿真图: 芯片/模块的特点: AT89C52/AT89C51简介: AT89C52/AT89C51是一款经典的8位单片机,是意法半导体(STMicroelectroni…

Transformer模型-add norm(残差连接归一化)的简明介绍

今天介绍transformer模型的add & norm(残差连接&归一化) add代表残差连接(Residual Connection) 残差连接是一种跳过连接,它将输入添加到网络的中间层或输出上。 **残差连接(Residual Connection)…

深度学习-机器视觉part2

深度学习-机器视觉part2 文章目录 深度学习-机器视觉part2一、从卷积到卷积神经网络二、手撕卷积代码2.1 动机2.2 数据集2.3 卷积操作2.3.1 填充(padding)2.3.2 卷积块2.3.3 池化2.3.4 Softmax 2.4 完整CNN2.5 训练改进 三、经典CNN模型介绍四、CNN模型的…

SQL Server详细安装使用教程

1.安装环境 现阶段基本不用SQL Server数据库了,看到有这样的分析话题,就把多年前的存货发一下,大家也可以讨论看看,思路上希望还有价值。 SQL Server 2008 R2有32位版本和64位版本,32位版本可以安装在Windows XP及以上…

网络安全之代码签名证书申请

代码签名,作为一种数字安全机制,对于软件开发、分发及用户使用环节具有至关重要的意义。以下从六大方面阐述代码签名必不可少的重要性: 确保代码来源可信: 代码签名如同软件的“身份证”,通过数字证书对开发者身份进…

2024年船舶、海洋工程与应用技术国际学术会议(ICSOEAT 2024)

2024 International Conference on Shipbuilding, Ocean Engineering and Applied Technology ●会议简介 2024年船舶、海洋工程与应用技术国际学术会议(ICSOEAT 2024)旨在汇聚全球船舶、海洋工程与应用技术领域的专家学者,共同探讨行业前沿…

【话题】程序员35岁会失业吗?

大家好,我是全栈小5,欢迎阅读小5的系列文章,这是《话题》系列文章 目录 背景招聘分析一、技术更新换代的挑战二、经验与技术的双重优势三、职业发展的多元化选择四、个人成长与职业规划的平衡五、结语文章推荐 背景 35岁被认为是程序员职业生…

【浅尝C++】多态机制=>重载重写隐藏的区别/抽象类/单继承与多继承的虚函数表/多态原理及虚函数表内存存储详谈

🏠专栏介绍:浅尝C专栏是用于记录C语法基础、STL及内存剖析等。 🎯每日格言:每日努力一点点,技术变化看得见。 文章目录 多态的概念多态的定义及实现多态的构成条件虚函数虚函数的重写override与final(C11&a…

ffmpeg 将多个视频片段合成一个视频

ffmpeg 将多个视频片段合成一个视频 References 网络视频 6 分钟的诅咒。 新建文本文件 filelist.txt filelist.txtfile output_train_video_0.mp4 file output_train_video_1.mp4 file output_train_video_2.mp4 file output_train_video_3.mp4 file output_train_video_4.m…

C语言完结篇(17)

编译和链接 1. 翻译环境和运⾏环境 2. 翻译环境:预编译编译汇编链接 我们知道计算机能够执行的是二进制的指令 而我们的C语言代码都是文本信息 所以我们需要让C语言代码转变为二进制的指令(这是需要编译器来进行处理的) 翻译环境和运⾏…

2024年MathorCup妈妈杯数学建模思路D题思路解析+参考成品

1 赛题思路 (赛题出来以后第一时间在群内分享,点击下方群名片即可加群) 2 比赛日期和时间 报名截止时间:2024年4月11日(周四)12:00 比赛开始时间:2024年4月12日(周五)8:00 比赛结束时间&…