2024年MathorCup妈妈杯数学建模思路D题思路解析+参考成品

news2024/11/18 4:40:56

1 赛题思路

(赛题出来以后第一时间在群内分享,点击下方群名片即可加群)

2 比赛日期和时间
报名截止时间:2024年4月11日(周四)12:00

比赛开始时间:2024年4月12日(周五)8:00

比赛结束时间:2024年4月16日(周二)9:00

3 组织机构
主办单位:中国优选法统筹法与经济数学研究会

中国优选法统筹法与经济数学研究会是在中国科学技术协会直接领导下的学术性社会团体,是国家一级学会。学会由华罗庚教授于1981年发起成立,至今成立了评价方法与应用、项目管理、计算机模拟、统筹、管理决策与信息系统、工业工程、高等教育管理、数学教育、经济数学与管理数学、应急管理、灰色系统研究,复杂系统研究等十余个专业分会。竞赛是由中国优选法统筹法与经济数学研究会主办,MathorCup高校数学建模挑战赛组委会具体负责竞赛的组织。

4 建模常见问题类型


趁现在赛题还没更新,给大家汇总一下建模经常使用到的数学模型,题目八九不离十基本属于一下四种问题

4.1 分类问题

神经网络分类:

BP 神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。RBF(径向基)神经网络:径向基函数(RBF-Radial Basis Function)神经网络是具有单隐层的三层前馈网络。它模拟了人脑中局部调整、相互覆盖接收域的神经网络结构。感知器神经网络:是一个具有单层计算神经元的神经网络,网络的传递函数是线性阈值单元。主要用来模拟人脑的感知特征。线性神经网络:是比较简单的一种神经网络,由一个或者多个线性神经元构成。采用线性函数作为传递函数,所以输出可以是任意值。自组织神经网络:自组织神经网络包括自组织竞争网络、自组织特征映射网络、学习向量量化等网络结构形式。K近邻算法: K最近邻分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

import numpy as np

# 定义神经网络类
class NeuralNetwork:
    def __init__(self):
        # 随机初始化权重
        np.random.seed(1)
        self.weights = 2 * np.random.random((3, 1)) - 1

    # Sigmoid激活函数
    def sigmoid(self, x):
        return 1 / (1 + np.exp(-x))

    # Sigmoid的导数
    def sigmoid_derivative(self, x):
        return x * (1 - x)

    # 训练神经网络
    def train(self, inputs, outputs, iterations):
        for iteration in range(iterations):
            # 正向传播
            output = self.predict(inputs)

            # 计算误差
            error = outputs - output

            # 反向传播
            adjustment = np.dot(inputs.T, error * self.sigmoid_derivative(output))

            # 更新权重
            self.weights += adjustment

    # 预测
    def predict(self, inputs):
        return self.sigmoid(np.dot(inputs, self.weights))

# 训练数据集
training_inputs = np.array([[0, 0, 1],
                            [1, 1, 1],
                            [1, 0, 1],
                            [0, 1, 1]])

training_outputs = np.array([[0, 1, 1, 0]]).T

# 初始化神经网络
neural_network = NeuralNetwork()

print("随机初始化的权重:")
print(neural_network.weights)

# 训练神经网络
neural_network.train(training_inputs, training_outputs, 10000)

print("训练后的权重:")
print(neural_network.weights)

# 测试新数据
print("新数据预测结果:")
print(neural_network.predict(np.array([1, 0, 0])))

4.2 优化问题

研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。建模方法:列出约束条件及目标函数;画出约束条件所表示的可行域;在可行域内求目标函数的最优解及最优值。

非线性规划:

非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个 n元实函数在一组等式或不等式的约束条件下的极值问题,且 目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是 线性函数的情形则属于线性规划。

整数规划:

规划中的变量(全部或部分)限制为整数,称为整数规划。若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性规划。一类要求问题的解中的全部或一部分变量为整数的数学规划。从约束条件的构成又可细分为线性,二次和非线性的整数规划。

from pulp import *

# 创建整数规划问题
prob = LpProblem("Integer_Problem", LpMaximize)

# 定义决策变量
x1 = LpVariable("x1", lowBound=0, cat='Integer')
x2 = LpVariable("x2", lowBound=0, cat='Integer')

# 定义目标函数
prob += 3*x1 + 2*x2, "Objective_Function"

# 添加约束条件
prob += 2*x1 + x2 <= 10
prob += x1 + 3*x2 <= 12

# 解决问题
prob.solve()

# 输出结果
print("Status:", LpStatus[prob.status])
print("Optimal values:")
for v in prob.variables():
    print(v.name, "=", v.varValue)
print("Optimal value of the objective function:", value(prob.objective))

4.3 预测问题

灰色预测

灰色预测是就灰色系统所做的预测。是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

import numpy as np

# 灰色预测模型
def grey_prediction(data):
    n = len(data)
    
    # 累加生成序列
    accumulation = np.cumsum(data)
    
    # 计算累加生成序列的一次紧邻均值生成序列
    avg_accumulation = 0.5 * (accumulation[:-1] + accumulation[1:])
    
    # 建立累加生成序列的一次紧邻均值生成序列与原始数据的关系
    x0 = data[0]
    B = np.vstack((-avg_accumulation, np.ones(n-1))).T
    Yn = data[1:]
    
    # 求解参数
    a, u = np.dot(np.linalg.inv(np.dot(B.T, B)), np.dot(B.T, Yn))
    
    # 模型检验
    Pn = (x0 - u/a) * np.exp(-a * np.arange(1, n + 1)) + u/a
    
    # 预测
    predict = np.hstack((x0, np.diff(Pn).cumsum()))
    
    return predict

# 示例数据
data = np.array([120, 130, 125, 135, 140, 145])

# 灰色预测
prediction = grey_prediction(data)

# 输出预测结果
print("原始数据:", data)
print("灰色预测结果:", prediction)

4.4 评价问题

主成分分析法(降维)

是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

import numpy as np
from sklearn.decomposition import PCA

# 示例数据
data = np.array([[1, 2, 3],
                 [4, 5, 6],
                 [7, 8, 9],
                 [10, 11, 12]])

# 创建 PCA 模型,指定主成分数量
pca = PCA(n_components=2)

# 拟合数据并进行主成分分析
pca.fit(data)

# 转换数据到主成分空间
transformed_data = pca.transform(data)

# 主成分
components = pca.components_

# 方差解释比
explained_variance_ratio = pca.explained_variance_ratio_

# 输出结果
print("原始数据:")
print(data)
print("\n主成分:")
print(components)
print("\n转换后的数据:")
print(transformed_data)
print("\n方差解释比:")
print(explained_variance_ratio)

5 建模资料 

六、获取方式

思路及参考成品将在下方名片群文件中更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1573640.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RGB三通道和灰度值的理解

本文都是来自于chatGPT的回答!!! 目录 Q1:像素具有什么属性?Q2:图像的色彩是怎么实现的?Q3:灰度值和颜色值是一个概念吗?Q4:是不是像素具有灰度值&#xff0c;也有三个颜色分量RGB&#xff1f;Q5:灰度图像是没有色彩的吗&#xff1f;Q6: 彩色图像是既具有灰度值也具有RGB三…

Java Spring IoCDI :探索Java Spring中控制反转和依赖注入的威力,增强灵活性和可维护性

&#x1f493; 博客主页&#xff1a;从零开始的-CodeNinja之路 ⏩ 收录文章&#xff1a;Java Spring IoC&DI :探索Java Spring中控制反转和依赖注入的威力,增强灵活性和可维护性 &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐文章 目录 前提小知识:高内…

16-代码随想录206反转链表

16-代码随想录206反转链表 206.反转链表 力扣题目链接(opens new window) 题意&#xff1a;反转一个单链表。 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL 206. 反转链表 给你单链表的头节点 head &#xff0c;请你反转链表&…

RTX RTOS 操作实例分析之---线程(thread)

0 Preface/Foreword 1 线程&#xff08;thread&#xff09; 1.1 线程定义 1.1.1 USE_BASIC_THREADS&#xff08;宏定义&#xff09; 经过以上步骤&#xff08;makefile包含&#xff09;&#xff0c;USE_BASIC_THREADS在编译阶段被定义到相应的模块中。 1.1.2 定义线程ID变量…

博客部署004-centos安装mysql及redis

1、如何查看当前centos版本&#xff1f; cat /etc/os-release 2、安装mysql 我的是centos8版本&#xff0c;使用dnf命令 2.1 CentOS 7/8: sudo yum install -y mysql-community-server 或者在CentOS 8上&#xff0c;使用DNF:&#x1f31f; sudo dnf install -y mysql-ser…

无尽加班何时休--状态模式

1.1 加班&#xff0c;又是加班&#xff01; 公司的项目很急&#xff0c;所以要求加班。经理把每个人每天的工作都排得满满的&#xff0c;说做完就可以回家&#xff0c;但是没有任何一个人可以在下班前完成的&#xff0c;基本都得加班&#xff0c;这就等于是自愿加班。我走时还有…

[技术闲聊]我对电路设计的理解(七)-Cadence原理图绘制

一、原理图软件推荐 之前的章节有讲过AD、PADS、Cadence&#xff0c;以及三者的应用标准&#xff0c;今天再讲讲这一点。 如果是学生&#xff0c;可以学习AD软件&#xff0c;因为学校在学习&#xff0c;上手容易&#xff0c;而且即使工作后&#xff0c;如果是电机控制等4层板或…

数据劫持的冲突问题

在近段时间我又再一次使用了数据劫持&#xff0c;发现了一些冲突问题&#xff0c;并在此介绍我所应用的场景。 一、冲突问题 在之前的文章中有介绍过数据劫持&#xff0c;但后来使用的很少&#xff0c;最近在一次使用的过程中&#xff0c;发现了一些问题。 1.value属性的冲突…

第十四届蓝桥杯省赛大学C组(C/C++)填充

原题链接&#xff1a;填充 有一个长度为 n 的 01 串&#xff0c;其中有一些位置标记为 ?&#xff0c;这些位置上可以任意填充 0 或者 1&#xff0c;请问如何填充这些位置使得这个 01 串中出现互不重叠的 0 和 1 子串最多&#xff0c;输出子串个数。 输入格式 输入一行包含一…

【51单片机学习记录】超声波测距

一、超声波测距概述 &#xff08;1&#xff09;超声波时间差测距原理 超声波发射器向某一方向发射超声波&#xff0c;在发射时刻的同时开始计时&#xff0c;超声波在空气中传播&#xff0c;途中碰到障碍物就立即返回来&#xff0c;超声波接收器收到反射波就立即停止计时。超声…

环形链表 - LeetCode 热题 25

大家好&#xff01;我是曾续缘&#x1f970; 今天是《LeetCode 热题 100》系列 发车第 25 天 链表第 4 题 ❤️点赞 &#x1f44d; 收藏 ⭐再看&#xff0c;养成习惯 环形链表 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可…

道路病害的检测与评估

基于yolov8道路病害的检测与评估 1 安装yolov8并使用 1.下载后: 2.选择为所有用户安装 3.选择一个合适的目录 4.第一个是自动添加环境变量,我们用默认的第二个后边手动添加 5.等待安装 1.1 安装anconda并配置环境变量 安装完成anconda之后,主要用的两个为Anaconda Prompt …

用树莓派获取传感器数据通过Onenet云平台(物模型)传输至微信小程序(上)

前言 为了传输传感器数据&#xff0c;在网上找了很多方法&#xff0c;但都因为各种各样的问题最终没能成功实现。最终找到这个既简单&#xff0c;又方便实现的方法。步骤有点多&#xff0c;希望大家可以跟着教程&#xff0c;一步步耐心的做下去&#xff0c;愿大家都能成功实现数…

ubuntu系统安装systemc-2.3.4流程

背景&#xff1a;systemC编程在linux下的基础环境配置 1&#xff0c;下载安装包&#xff0c;并解压 &#xff08;先下载了最新的3.0.0&#xff0c;安装时候显示sc_cmnhdr.h:115:5: error: #error **** SystemC requires a C compiler version of at least C17 **** &#xff…

idea开发 java web 高校学籍管理系统bootstrap框架web结构java编程计算机网页

一、源码特点 java 高校学籍管理系统是一套完善的完整信息系统&#xff0c;结合java web开发和bootstrap UI框架完成本系统 &#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 前段主要技术 css jq…

【云计算】云数据中心网络(一):VPC

云数据中心网络&#xff08;一&#xff09;&#xff1a;VPC 1.什么是 VPC2.VPC 的组成2.1 虚拟交换机2.2 虚拟路由器 3.VPC 网络规划3.1 VPC 数量规划3.2 交换机数量规划3.3 地址空间规划3.4 不同规模企业地址空间规划实践 4.VPC 网络高可靠设计4.1 单地域单可用区部署4.2 单地…

【鸿蒙 HarmonyOS】@ohos.promptAction (弹窗)

一、背景 创建并显示文本提示框、对话框和操作菜单。 文档地址&#x1f449;&#xff1a;文档中心 说明 本模块首批接口从API version 9开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。 该模块不支持在UIAbility的文件声明处使用&#xff0c;即…

Premiere Pro 2024:赋予创意翅膀,让你的视频飞翔 mac/win版

Premiere Pro 2024&#xff0c;作为Adobe旗下的旗舰视频编辑软件&#xff0c;自推出以来&#xff0c;一直在视频制作领域占据着重要的地位。随着技术的不断进步和创新&#xff0c;Premiere Pro 2024为用户带来了前所未有的编辑体验&#xff0c;重新定义了视频制作的标准。 Pre…

爬虫 新闻网站 以湖南法治报为例(含详细注释) V1.0

目标网站&#xff1a;湖南法治报 爬取目的&#xff1a;为了获取某一地区更全面的在湖南法治报已发布的宣传新闻稿&#xff0c;同时也让自己的工作更便捷 环境&#xff1a;Pycharm2021&#xff0c;Python3.10&#xff0c; 安装的包&#xff1a;requests&#xff0c;csv&#xff…