FJSP:狐猴优化算法(Lemurs Optimizer,LO)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

news2024/11/19 0:22:01

一、柔性作业车间调度问题

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),是一种经典的组合优化问题。在FJSP问题中,有多个作业需要在多个机器上进行加工,每个作业由一系列工序组成,每个工序需要在特定的机器上完成。同时,每个机器一次只能处理一个工序,且每个工序的处理时间可能不同。

FJSP问题的目标是找到一个最优的作业调度方案,使得所有作业的完成时间最小化。这个问题的难点在于需要考虑到多个作业、多个机器和多个工序之间的复杂关系,并且需要在有限的时间内找到最优解。

解决FJSP问题的方法包括启发式算法、精确算法和元启发式算法等。启发式算法通过一系列规则和策略来生成调度方案,常见的方法有遗传算法、模拟退火算法和禁忌搜索算法等。精确算法则通过穷举搜索或者动态规划等方法来找到最优解,但在实际应用中可能面临计算复杂度过高的问题。元启发式算法则结合了多种启发式算法和精确算法的优点,通过组合不同的方法来求解FJSP问题。
FJSP问题的难点主要体现在以下几个方面:

  1. 组合爆炸:FJSP问题中,每个工件都有多个工序需要完成,而每个工序都有多个可选的机器可以执行。这导致了组爆炸的问题,可能的调度方案数量非常庞,难以穷举所有可能性。

  2. 优化目标多样:FJSP问题通常有多个优化目标,如最小化总加权完成时间、最小化总延迟时间等。这些目标之间可能存在冲突,使找到一个全局最优解变得困难。

  3. 资源约束:FJSP问题中,每个机器在同一时间只能执行一个工序,且每个工序需要一定的时间和资源。这些资源约束增加了问题的复杂性,需要在满足约束条件的前提下进行调度。

  4. 实时性要求:在实际生产中,FJSP问题通常需要考虑实时性要求,即要求在有限的时间内生成一个可行的调度方案。这增加了问题的难度,需要在有限时间内找到一个较优的解。

柔性作业车间调度问题( FJSP) 的描述如下:n个工件 { J , J 2 , . . , J n } \{J,J_2,..,J_n\} {J,J2,..,Jn}要在 m m m 台机器 { M 1 , M 2 , . . , M m } \{M_1,M_2,..,M_m\} {M1,M2,..,Mm} 上加工。每个工件包含一道或多道工序,工序顺序是预先确定的,每道工序可以在多台不同加工机器上进行加工,工序的加工时间随加工机器的不同而不同。调度目标是为每道工序选择最合适的机器、确定每台机器上各个工序的最佳加工顺序以及开工时间,使整个系统的某些性能指标达到最优。因此,柔性作业车间调度问题包含两个子问题:确定各工件的加工机器 (机器选择子问题) 和确定各个机器上的加工先后顺序 (工序排序子问题)。

此外,在加工过程中还需要满足下面的约束条件:
(1) 同一台机器同一时刻只能加工一个工件;
(2) 同一工件的同一道工序在同一时刻只能被一台机器加工;
(3) 每个工件的每道工序一旦开始加工不能中断;
(4) 不同工件之间具有相同的优先级;
(5)不同工件的工序之间没有先后约束,同一工件的工序之间有先后约束;
(6)所有工件在零时刻都可以被加工。

1.1符号描述

n : n: n:工件总数;
m : m: m: 机器总数;
i , e : i,e: i,e: 机器序号, i , e = 1 , 2 , 3 , . . . , m i,e=1,2,3,...,m i,e=1,2,3,...,m ;
j , k : j,k: j,k: 工件序号, j , k = 1 , 2 , 3 , . . . , n ; j,k=1,2,3,...,n; j,k=1,2,3,...,n; h j : h_j: hj:工件 j j j 的工序总数;
h , l : h,l: h,l: 工序序号, h = 1 , 2 , 3 , . . . , h j h=1,2,3,...,h_j h=1,2,3,...,hj ;
Ω j h : \Omega_{jh}: Ωjh:工件 j j j 的第 h h h 道工序的可选加工机器集;
m j h : m_{jh}: mjh:工件 j j j 的第 h h h 道工序的可选加工机器数;
O j h : O_{jh}: Ojh:工件 j j j 的第 h h h道工序;
M i j h : M_{ijh}: Mijh:工件 j j j 的第 h h h道工序在机器 i i i 上加工;
p i j h : p_{ijh}: pijh:工件 j j j的第 h h h道工序在机器 i i i上的加工时间;
s j h : s_{jh}: sjh:工件 j j j 的第 h h h 道工序加工开始时间;
c j h : c_{jh}: cjh:工件 j j j的第 h h h道工序加工完成时间;
d j : d_j: dj:工件 j j j 的交货期;
L L L: 一个足够大的正数;
C j C_j Cj: 每个工件的完成时间;
C max ⁡ : C_{\max}: Cmax: 最大完工时间;
T o : T o = ∑ j = 1 n h j T_o:\quad T_o=\sum_{j=1}^nh_j To:To=j=1nhj, 所有工件工序总数;
x i j h = { 1 , 如果工序 O j h 选择机器 i ; 0 , 否则; x_{ijh}=\begin{cases}1,\text{如果工序}O_{jh}\text{选择机器}i;\\0,\text{否则;}\end{cases} xijh={1,如果工序Ojh选择机器i;0,否则;
y i j h k l = { 1 , 如果 O i j h 先于 O i k l 加工 ; 0 , 否则 ; y_{ijhkl}=\begin{cases}1,\text{如果}O_{ijh}\text{先于}O_{ikl}\text{加工};\\0,\text{否则};\end{cases} yijhkl={1,如果Oijh先于Oikl加工;0,否则;

1.2约束条件

C 1 : s j h + x i j h × p i j h ≤ c j h C_{1}:s_{jh}+x_{ijh}\times p_{ijh}\leq c_{jh} C1:sjh+xijh×pijhcjh

其中: i = 1 , … , m ; j = 1 , … , n ; i=1,\ldots,m;j=1,\ldots,n; i=1,,m;j=1,,n; h = 1 , … , h j h=1,\ldots,h_j h=1,,hj
C 2 : c j h ≤ s j ( h + 1 ) C_{2}:c_{jh}\leq s_{j(h+1)} C2:cjhsj(h+1)
其中 : j = 1 , … , n ; h = 1 , . . . , h j − 1 :j=1,\ldots,n;h=1,...,h_j-1 :j=1,,n;h=1,...,hj1
C 3 : c j h j ≤ C max ⁡ C_{3}:c_{jh_j}\leq C_{\max} C3:cjhjCmax
其中: j = 1 , . . . , n j=1,...,n j=1,...,n
C 4 : s j h + p i j h ≤ s k l + L ( 1 − y i j h k l ) C_{4}:s_{jh}+p_{ijh}\leq s_{kl}+L(1-y_{ijhkl}) C4:sjh+pijhskl+L(1yijhkl)

其中 : j = 0 , … , n ; k = 1 , … , n ; h = 1 , … , h j ; l = 1 , … , h k ; i = 1 , … , m :j=0,\ldots,n;k=1,\ldots,n;h=1,\ldots,h_j;l=1,\ldots,h_k;i=1,\ldots,m :j=0,,n;k=1,,n;h=1,,hj;l=1,,hk;i=1,,m
C 5 : c j h ≤ s j ( h + 1 ) + L ( 1 − y i k l j ( h + 1 ) ) C_{5}:c_{jh}\leq s_{j(h+1)}+L(1-y_{iklj(h+1)}) C5:cjhsj(h+1)+L(1yiklj(h+1))

其中 : j = 1 , … , n ; k = 0 , … , n ; h = 1 , … , h j − 1 ; l = 1 , … , h k ; i = 1 , … , m :j=1,\ldots,n;k=0,\ldots,n;h=1,\ldots,h_j-1;\quad l=1,\ldots,h_k;\quad i=1,\ldots,m :j=1,,n;k=0,,n;h=1,,hj1;l=1,,hk;i=1,,m
h 1 : ∑ i = 1 m j h x i j h = 1 h_{1}:\sum_{i=1}^{m_{jh}}x_{ijh}=1 h1:i=1mjhxijh=1
其中: h = 1 , . . . , h j ; j = 1 , . . . , n ; h=1,...,h_j;j=1,...,n; h=1,...,hj;j=1,...,n;

h 2 : ∑ j = 1 n ∑ h = 1 h j y i j h k l = x i k l h_{2}:\sum_{j=1}^n\sum_{h=1}^{h_j}y_{ijhkl}=x_{ikl} h2:j=1nh=1hjyijhkl=xikl

其中: i = 1 , … , m ; k = 1 , … , n ; l = 1 , … , h k i=1,\ldots,m;k=1,\ldots,n;l=1,\ldots,h_k i=1,,m;k=1,,n;l=1,,hk
h 3 : ∑ i = 1 n ∑ i = 1 n k y i j h k l = x i j h h_{3}:\sum_{i=1}^n\sum_{i=1}^{n_k}y_{ijhkl}=x_{ijh} h3:i=1ni=1nkyijhkl=xijh

其中: i = 1 , … , m ; j = 1 , … , n ; h = 1 , … , h k i=1,\ldots,m;j=1,\ldots,n;\quad h=1,\ldots,h_k i=1,,m;j=1,,n;h=1,,hk
C 6 : s j h ≥ 0 , c j h ≥ 0 C_{6}:s_{jh}\geq0,c_{jh}\geq0 C6:sjh0,cjh0

其中 : j = 0 , 1 , . . . , n ; h = 1 , . . . , h j :j=0,1,...,n;h=1,...,h_j :j=0,1,...,n;h=1,...,hj

C 1 C_{1} C1 C 2 C_{2} C2表示每一个工件的工序先后顺序约束 ;
C 3 C_{3} C3表示工件的完工时间的约束,即每一个工件的完工时间不可能超过总的完工时间 ;
C 4 C_{4} C4 C 5 C_{5} C5表示同一时刻同一台机器只能加工一道工序 ;
h 1 h_{1} h1表示机器约束,即同一时刻同一道工序只能且仅能被一台机器加工;
h 2 h_{2} h2 h 3 h_{3} h3表示存在每一台机器上可以存在循环操作 ;
C 6 C_{6} C6表示各个参数变量必须是正数。

1.3目标函数

FJSP的目标函数是最大完工时间最小。完工时间是每个工件最后一道工序完成的时间,其中最大的那个时间就是最大完工时间(makespan)。它是衡量调度方案的最根本指标, 主要体现车间的生产效率,如下式所示:

f = min ⁡ ( max ⁡ l ≤ j ≤ n ( C j ) ) f=\min(\max_{\mathrm{l\leq}j\leq n}(C_j)) f=min(maxljn(Cj))

参考文献:
[1]张国辉.柔性作业车间调度方法研究[D].华中科技大学,2009.

二、算法简介

狐猴优化算法(Lemurs Optimizer,LO)由Ammar Kamal Abasi等人于2022年提出,该算法模拟狐猴的跳跃和跳舞行为,具有结构简单,思路新颖,搜索速度快等优势。
参考文献:

[1]Abasi AK, Makhadmeh SN, Al-Betar MA, Alomari OA, Awadallah MA, Alyasseri ZAA, Doush IA, Elnagar A, Alkhammash EH, Hadjouni M. Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization. Applied Sciences. 2022; 12(19):10057. Applied Sciences | Free Full-Text | Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization

原文链接:https://blog.csdn.net/weixin_46204734/article/details/133913358

三、算法求解FJSP

3.1部分代码

dim=2*sum(operaNumVec);
LB = -jobNum * ones(1, dim);
UB = jobNum * ones(1, dim);
Max_iteration = 100;
SearchAgents_no = 100;
fobj=@(x)fitness(x, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);

%% 优化算法求解FJSP
[fMin , bestX, Convergence_curve ] = LO(SearchAgents_no,Max_iteration,LB,UB,dim,fobj);
machineTable=GetMachineTable(bestX, MachineNum,jobNum,jobInfo,operaNumVec,candidateMachine);

%% 画收敛曲线图
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('迭代次数')
ylabel('最大完工时间')
legend('LO')
saveas(gca,'1.jpg');

3.2部分结果

在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1573335.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux(Ubuntu)中创建【samba】服务,用于和Windows系统之间共享文件

目录 1.先介绍一下什么是Samba 2.安装,配置服务 安装 配置(smb.conf) 配置用户 3.出现的问题(Failed to add entry for user XXXX) 4.创建文件夹 5.windows访问 1.先介绍一下什么是Samba Samba是一个开源的软…

HTML5.Canvas简介

1. Canvas.getContext getContext(“2d”)是Canvas元素的方法,用于获取一个用于绘制2D图形的绘图上下文对象。在给定的代码中,首先通过getElementById方法获取id为"myCanvas"的Canvas元素,然后使用getContext(“2d”)方法获取该Ca…

剑指Offer题目笔记26(动态规划的基础知识)

面试题88: 问题: ​ 一个数组cost的所有数字都是正数,它的第i个数字表示在一个楼梯的第i级台阶往上爬的成本,在支付了成本cost[i]之后可以从第i级台阶往上爬1级或2级。请计算爬上该楼梯的最少成本。 解决方案一:&…

【简单讲解下epoll】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出…

Day:004(1) | Python爬虫:高效数据抓取的编程技术(数据解析)

数据解析-正则表达式 在前面我们已经搞定了怎样获取页面的内容,不过还差一步,这么多杂乱的代码夹杂文字我们怎样 把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式! 正则表达式是对字符串操作的一种…

力扣Lc28---- 557. 反转字符串中的单词 III(java版)-2024年4月06日

1.题目描述 2.知识点 1)用StringBuilder的方法 实现可变字符串结果 最后返回的时候用.toString的方法 2)在Java中使用StringBuilder的toString()方法时,它会返回StringBuilder对象当前包含的所有字符序列的字符串表示。 在我们的例子中,sb是一个Stri…

Django之五种中间件定义类型—process_request、process_view、process_response.......

目录 1. 前言 2. 基础中间件 3. 如何自定义中间件 4. 五种自定义中间件类型 4.1 process_request 4.2 process_view 4.3 process_response 4.4 process_exception 4.5 process_template_response 5. 最后 1. 前言 哈喽,大家好,我是小K,今天咋们…

90天玩转Python-02-基础知识篇:初识Python与PyCharm

90天玩转Python系列文章目录 90天玩转Python—01—基础知识篇:C站最全Python标准库总结 90天玩转Python--02--基础知识篇:初识Python与PyCharm 90天玩转Python—03—基础知识篇:Python和PyCharm(语言特点、学习方法、工具安装) 90天玩转Python—04—基础知识篇:Pytho…

ubuntu20.04.6将虚拟机用户目录映射为磁盘Z

文章目录 linux虚拟机设置为NAT模式安装sshd服务映射目录到windows磁盘安装samba套件修改配置文件smb.conf重启smbd并设置用户名和密码 windows映射遇到的问题1、设置好之后映射不成功2、smbd下载失败3、smbd密码配置问题4、当有改动时候,最好重启一下smbd服务 linu…

图解大型网站多级缓存的分层架构

前言 缓存技术存在于应用场景的方方面面。从浏览器请求,到反向代理服务器,从进程内缓存到分布式缓存,其中缓存策略算法也是层出不穷。 假设一个网站,需要提高性能,缓存可以放在浏览器,可以放在反向代理服…

4月6号排序算法(2)

堆排序 讲堆排序之前我们需要了解几个定义 什么叫做最大堆,父亲节点,以及孩子节点 将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。 每个节点都是它的子树的根节点的父亲 。 反过来每个节点都是它父亲的孩子 。 …

post请求搜索功能爬虫

<!--爬虫仅支持1.8版本的jdk--> <!-- 爬虫需要的依赖--> <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId>httpclient</artifactId> <version>4.5.2</version> </dependency>…

「 典型安全漏洞系列 」11.身份验证漏洞详解

身份验证是验证用户或客户端身份的过程。网站可能会暴露给任何连接到互联网的人。这使得健壮的身份验证机制成为有效的网络安全不可或缺的一部分。 1. 什么是身份验证 身份验证即认证&#xff0c;是验证给定用户或客户端身份的过程。身份验证漏洞使攻击者能够访问敏感数据和功…

网络安全之命令注入

漏洞原理&#xff1a; 应用系统设计需要给用户提供指定的远程命令操作的接口&#xff0c;比如&#xff1a;路由器&#xff0c;防火墙&#xff0c;入侵检测等设备的web管理界面。一般会给用户提供一个ping操作的web界面 用户从web界面输入目标IP&#xff0c;提交后台会对改IP地…

C语言 练习题

目录 1.统计二进制中1的个数 方法1 方法2 方法3 2.求两个数二进制中不同位的个数 方法1 方法2 3.打印整数二进制的奇数位和偶数位 4.用“ * ”组成的X形图案 5.根据年份和月份判断天数 6.结语 1.统计二进制中1的个数 【题目内容】 写一个函数返回参数二进制中 1 的个…

MATLAB实现数值求解高阶常微分方程组

一、高阶常微分方程组 高阶常微分方程是指包含多个高阶常微分方程的系统。这些方程通常涉及多个未知函数及其高阶导数。解决高阶常微分方程组通常比解决单个高阶常微分方程更为复杂&#xff0c;因为需要同时考虑多个方程和多个未知函数之间的关系。 一般来说&#xff0c;解决…

数据库 06-03 时间戳

01.什么是时间戳 “时间戳是指格林威治时间1970年01月01日00时00分00秒(北京时间1970年01月01日08时00分00秒)起至现在的总秒数。通俗的讲, 时间戳是一份能够表示一份数据在一个特定时间点已经存在的完整的可验证的数据。 02.用时间戳实现调度 定义 数据库给予一个事务一个时…

安全的通信协议HTTPS被攻击改采用什么防护方案

随着互联网的发展&#xff0c;保护用户在网上交换的敏感信息的安全性变得至关重要。HTTPS&#xff08;Hypertext Transfer Protocol Secure&#xff09;作为一种安全的通信协议&#xff0c;通过加密数据传输&#xff0c;保护用户的隐私和数据安全。然而&#xff0c;尽管HTTPS提…

具有温度系数(Temperature)的Softmax函数

Softmax 函数 softmax 函数是一种激活函数&#xff0c;通常用作神经网络最后一层的输出函数。该函数是两个以上变量的逻辑函数的推广。 Softmax 将实数向量作为输入&#xff0c;并将其归一化为概率分布。 softmax函数的输出是与输入具有相同维度的向量&#xff0c;每个元素的…

openharmony launcher 调研笔记(02)UI 调用逻辑

最近在看launcher&#xff0c;把自己调研的点做个笔记&#xff0c;持续修改更新中&#xff0c;个人笔记酌情参考。 EntryView Column() { PageDesktopLayout(); } .height(this.workSpaceHeight) // this.mWorkSpaceHeight this.mScreenHe…