数据结构学习——栈和队列

news2025/1/14 0:45:55

1.栈

1.1栈的概念及结构

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端 称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。

出栈:栈的删除操作叫做出栈。出数据也在栈顶。

1.2栈的实现

栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。

入栈和出栈的示意图:

GIF 2024-4-2 9-39-15





#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>

typedef int STDataType;

typedef struct Stack
{
	STDataType* a;
	int top;
	int capacity;
}ST;

void STInit(ST* pst);
void STDestroy(ST* pst);


//栈顶插入删除
void STPush(ST* pst, STDataType x);
void STPop(ST* pst);
STDataType STTop(ST* pst);//拿取栈顶数据

bool STEmpty(ST* pst);
int STSize(ST* pst);
#define _CRT_SECURE_NO_WARNINGS 1
#include "Stack.h"


void STInit(ST* pst)
{
	assert(pst);
	pst->a = NULL;
	pst->capacity = 0;

	//表示top指向栈顶元素的下一个位置
	pst->top = 0;
}

void STDestroy(ST* pst)
{
	assert(pst);

	free(pst->a);
	pst->a = NULL;
	pst->capacity = pst->top = 0;
}

void STPush(ST* pst, STDataType x)
{
	assert(pst);

	if (pst->top == pst->capacity)
	{
		int newcapacity = pst->capacity == 0 ? 4 : pst->capacity * 2;
		STDataType* tmp = (STDataType*)realloc(pst->a, sizeof(STDataType) * newcapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			return 1;
		}
		pst->a = tmp;
		pst->capacity = newcapacity;
	}
	
	pst->a[pst->top] = x;
	pst->top++;
}

void STPop(ST* pst)
{
	assert(pst);
	assert(pst->top >0);

	pst->top--;
}

STDataType STTop(ST* pst)
{
	assert(pst);
	assert(pst->top > 0);

	return pst->a[pst->top-1];
}

bool STEmpty(ST* pst)//判断真假
{
	assert(pst);

	return pst->top == 0;
}

int STSize(ST* pst)
{
	assert(pst);

	return pst->top;
}
#define _CRT_SECURE_NO_WARNINGS 1
#include "Stack.h"

void Test1()
{
	ST s;
	STInit(&s);
	STPush(&s, 1);
	STPush(&s, 2);
	STPush(&s, 3);
	STPush(&s, 4);
	STPush(&s, 5);
	STPush(&s, 6);
	
	printf("栈共有%d个数据\n", STSize(&s));

	while (!STEmpty(&s))
	{
		printf("%d ", STTop(&s));
		STPop(&s);
	}

	STDestroy(&s);
}

int main()
{
	Test1();

	return 0;
}

2.队列

2.1队列的概念及结构

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出 FIFO(First In First Out)

入队列:进行插入操作的一端称为队尾

出队列:进行删除操作的一端称为队头

GIF 2024-4-2 20-10-45

2.2队列的实现

队列也可以数组和链表的结构实现,使用链表的结构实现更优一些,因为如果使用数组的结构,出队列在数 组头上出数据,效率会比较低。

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>

typedef int QDataType;

typedef struct QueueNode
{
	QDataType val;
	struct QueueNode* next;

}QNode;

typedef struct Queue
{
	QNode* phead;
	QNode* ptail;
	int size;
}Queue;

void QueueInit(Queue* pq);
void QueueDestroy(Queue* pq);


void QueuePush(Queue* pq, QDataType x);
void QueuePop(Queue* pq);

QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);

bool QueueEmpty(Queue* pq);
int QueueSize(Queue* pq);
#define _CRT_SECURE_NO_WARNINGS 1
#include"Queue.h"

void QueueInit(Queue* pq)
{
	assert(pq);
	pq->phead = pq->ptail = NULL;
	pq->size = 0;
}

void QueueDestroy(Queue* pq)
{
	assert(pq);
	
	QNode* cur = pq->phead;
	while (cur)
	{
		QNode* tmp = cur;
		cur = cur->next;
		free(tmp);
	}
	
	pq->ptail = pq->phead = NULL;
	pq->size = 0;

}

void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);

	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		return;
	}

	newnode->val = x;
	newnode->next = NULL;

	if (pq->ptail == NULL)
	{
		pq->phead = pq->ptail = newnode;
	}
	else
	{
		pq->ptail->next = newnode;
		pq->ptail = newnode;
	}
	pq->size++;
}

void QueuePop(Queue* pq)
{
	assert(pq);
	assert(pq->phead );
	
	QNode* tmp = pq->phead;
	pq->phead = pq->phead->next;
	free(tmp);
	tmp = NULL;
	if (pq->phead == NULL)
	{
		pq->ptail = NULL;
	}
	pq->size--;
}

QDataType QueueFront(Queue* pq)
{
	assert(pq);
	assert(pq->phead);

	return pq->phead->val;
}

QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(pq->ptail );

	return pq->ptail ->val;
}

bool QueueEmpty(Queue* pq)
{
	assert(pq);
	return pq->phead == NULL;
}

int QueueSize(Queue* pq)
{
	assert(pq);
	return pq->size;
}
#define _CRT_SECURE_NO_WARNINGS 1
#include"Queue.h"

void Test1()
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, 1);
	QueuePush(&q, 2);
	QueuePush(&q, 3);
	QueuePush(&q, 4);
	QueuePush(&q, 5);

	while (!QueueEmpty(&q))
	{
		printf("%d ", QueueFront(&q));
		QueuePop(&q);
	}
}

void Test2()
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, 1);
	QueuePush(&q, 2);
	QueuePush(&q, 3);
	QueuePop(&q);
	printf("%d ", QueueSize(&q));
	QueuePush(&q, 4);
	QueuePush(&q, 5);
	QueuePop(&q);
	printf("%d ", QueueSize(&q));

}

void Test3()
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, 1);
	QueuePush(&q, 2);
	QueuePush(&q, 3);
	QueuePush(&q, 4);
	QueuePush(&q, 5);
	QueueDestroy(&q);

	while (!QueueEmpty(&q))
	{
		printf("%d ", QueueFront(&q));
		QueuePop(&q);
	}

}

int main()
{
	Test3();

	return 0;
}

3.栈和队列面试题

括号匹配问题。

20. 有效的括号 - 力扣(LeetCode)

typedef int STDataType;

typedef struct Stack
{
	STDataType* a;
	int top;
	int capacity;
}ST;

void STInit(ST* pst);
void STDestroy(ST* pst);


//栈顶插入删除
void STPush(ST* pst, STDataType x);
void STPop(ST* pst);
STDataType STTop(ST* pst);//拿取栈顶数据

bool STEmpty(ST* pst);
int STSize(ST* pst);

void STInit(ST* pst)
{
	assert(pst);
	pst->a = NULL;
	pst->capacity = 0;

	//表示top指向栈顶元素的下一个位置
	pst->top = 0;
}

void STDestroy(ST* pst)
{
	assert(pst);

	free(pst->a);
	pst->a = NULL;
	pst->capacity = pst->top = 0;
}

void STPush(ST* pst, STDataType x)
{
	assert(pst);

	if (pst->top == pst->capacity)
	{
		int newcapacity = pst->capacity == 0 ? 4 : pst->capacity * 2;
		STDataType* tmp = (STDataType*)realloc(pst->a, sizeof(STDataType) * newcapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		pst->a = tmp;
		pst->capacity = newcapacity;
	}
	
	pst->a[pst->top] = x;
	pst->top++;
}

void STPop(ST* pst)
{
	assert(pst);
	assert(pst->top >0);

	pst->top--;
}

STDataType STTop(ST* pst)
{
	assert(pst);
	assert(pst->top > 0);

	return pst->a[pst->top-1];
}

bool STEmpty(ST* pst)//判断真假
{
	assert(pst);

	return pst->top == 0;
}

int STSize(ST* pst)
{
	assert(pst);

	return pst->top;
}

bool isValid(char* s) 
{
    ST pt;
   STInit(&pt);
    while(*s)
    {
        if(*s=='('||*s=='{'||*s=='[')
        {
            STPush(&pt, *s);
        }
        else
        {
            //右括号比左括号多
            if(STEmpty(&pt))
            {
                STDestroy(&pt);
                return false;
            }
            
            char top = STTop(&pt);
            STPop(&pt);

            if((*s=='}' && top!='{')||
               (*s==')' && top!='(')||
               (*s==']' && top!='['))
            {
                STDestroy(&pt);
                return false;
            }

        }
        ++s;
    }
    bool ret =STEmpty(&pt);

   STDestroy(&pt);
   return ret;
}

用队列实现栈。

225. 用队列实现栈 - 力扣(LeetCode)

GIF 2024-4-2 20-23-37


typedef int QDataType;

typedef struct QueueNode
{
	QDataType val;
	struct QueueNode* next;

}QNode;

typedef struct Queue
{
	QNode* phead;
	QNode* ptail;
	int size;
}Queue;

void QueueInit(Queue* pq);
void QueueDestroy(Queue* pq);


void QueuePush(Queue* pq, QDataType x);
void QueuePop(Queue* pq);

QDataType QueueFront(Queue* pq);
QDataType QueueBack(Queue* pq);

bool QueueEmpty(Queue* pq);
int QueueSize(Queue* pq);

void QueueInit(Queue* pq)
{
	assert(pq);
	pq->phead = pq->ptail = NULL;
	pq->size = 0;
}

void QueueDestroy(Queue* pq)
{
	assert(pq);
	
	QNode* cur = pq->phead;
	while (cur)
	{
		QNode* tmp = cur;
		cur = cur->next;
		free(tmp);
	}
	
	pq->ptail = pq->phead = NULL;
	pq->size = 0;

}

void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);

	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		return;
	}

	newnode->val = x;
	newnode->next = NULL;

	if (pq->ptail == NULL)
	{
		pq->phead = pq->ptail = newnode;
	}
	else
	{
		pq->ptail->next = newnode;
		pq->ptail = newnode;
	}
	pq->size++;
}

void QueuePop(Queue* pq)
{
	assert(pq);
	assert(pq->phead );
	
	QNode* tmp = pq->phead;
	pq->phead = pq->phead->next;
	free(tmp);
	tmp = NULL;
	if (pq->phead == NULL)
	{
		pq->ptail = NULL;
	}
	pq->size--;
}

QDataType QueueFront(Queue* pq)
{
	assert(pq);
	assert(pq->phead);

	return pq->phead->val;
}

QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(pq->ptail );

	return pq->ptail ->val;
}

bool QueueEmpty(Queue* pq)
{
	assert(pq);
	return pq->phead == NULL;
}

int QueueSize(Queue* pq)
{
	assert(pq);
	return pq->size;
}

typedef struct 
{
   Queue q1;
   Queue q2; 
} MyStack;


MyStack* myStackCreate() 
{
    MyStack* pst=(MyStack*)malloc(sizeof(MyStack));
    QueueInit(&pst->q1);
    QueueInit(&pst->q2);

    return pst;
}

void myStackPush(MyStack* obj, int x) 
{
    if(!QueueEmpty(&obj->q1))
    {
        QueuePush(&obj->q1, x);
    }
    else   
    {
        QueuePush(&obj->q2, x);
    } 
}

int myStackPop(MyStack* obj) 
{
    Queue* empyty=&obj->q1;
    Queue* nonempyty=&obj->q2;

    if(!QueueEmpty(&obj->q1))
    {
        empyty=&obj->q2;
        nonempyty=&obj->q1;
    }

    while(QueueSize(nonempyty)>1)
    {
        QueuePush(empyty, QueueFront(nonempyty));
        QueuePop(nonempyty);
    }

    int top=QueueFront(nonempyty);
    QueuePop(nonempyty);
    return top;
}

int myStackTop(MyStack* obj) 
{
    if(!QueueEmpty(&obj->q1))
    {
        return QueueBack(&obj->q1);
    }
    else
    {
        return QueueBack(&obj->q2);
    }
}

bool myStackEmpty(MyStack* obj) 
{
    return QueueEmpty(&obj->q1)&&QueueEmpty(&obj->q2);
}

void myStackFree(MyStack* obj) 
{
    QueueDestroy(&obj->q1);
    QueueDestroy(&obj->q2);

    free(obj);
    obj=NULL;
}

/**
 * Your MyStack struct will be instantiated and called as such:
 * MyStack* obj = myStackCreate();
 * myStackPush(obj, x);
 
 * int param_2 = myStackPop(obj);
 
 * int param_3 = myStackTop(obj);
 
 * bool param_4 = myStackEmpty(obj);
 
 * myStackFree(obj);
*/

![微信图片_20240331154239](C:\Users\bradypod\AppData\Roaming\Typora\typora-user-images\微信图片_20240331154239.jpg

用栈实现队列。

232. 用栈实现队列 - 力扣(LeetCode)

此题解题思路如下:

先将数据放在pushst栈里面,popst栈为空再把pushst栈里面的数据放进popst栈里面去,不为空则不执行。不为空时候直接拿取栈顶数据。

GIF 2024-4-2 19-14-14

typedef int STDataType;

typedef struct Stack
{
	STDataType* a;
	int top;
	int capacity;
}ST;

void STInit(ST* pst);
void STDestroy(ST* pst);

void STPush(ST* pst, STDataType x);
void STPop(ST* pst);
STDataType STTop(ST* pst);//拿取栈顶数据

bool STEmpty(ST* pst);
int STSize(ST* pst);

void STInit(ST* pst)
{
	assert(pst);
	pst->a = NULL;
	pst->capacity = 0;

	//表示top指向栈顶元素的下一个位置
	pst->top = 0;
}

void STDestroy(ST* pst)
{
	assert(pst);

	free(pst->a);
	pst->a = NULL;
	pst->capacity = pst->top = 0;
}

void STPush(ST* pst, STDataType x)
{
	assert(pst);

	if (pst->top == pst->capacity)
	{
		int newcapacity = pst->capacity == 0 ? 4 : pst->capacity * 2;
		STDataType* tmp = (STDataType*)realloc(pst->a, sizeof(STDataType) * newcapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			return;
		}
		pst->a = tmp;
		pst->capacity = newcapacity;
	}
	
	pst->a[pst->top] = x;
	pst->top++;
}

void STPop(ST* pst)
{
	assert(pst);
	assert(pst->top >0);

	pst->top--;
}

STDataType STTop(ST* pst)
{
	assert(pst);
	assert(pst->top > 0);

	return pst->a[pst->top-1];
}

bool STEmpty(ST* pst)//判断真假
{
	assert(pst);

	return pst->top == 0;
}

int STSize(ST* pst)
{
	assert(pst);

	return pst->top;
}


typedef struct 
{
    ST pushst;
    ST popst;
} MyQueue;


MyQueue* myQueueCreate() 
{
    MyQueue* obj=(MyQueue*)malloc(sizeof(MyQueue));
    STInit(&obj->pushst);
    STInit(&obj->popst);

    return obj;
}

void myQueuePush(MyQueue* obj, int x) 
{
    STPush(&obj->pushst, x);
}

int myQueuePop(MyQueue* obj) 
{
    int tmp=myQueuePeek(obj);
    STPop(&obj->popst);
    return tmp;
}

int myQueuePeek(MyQueue* obj) 
{
    if(STEmpty(&obj->popst))
    {
        while(!STEmpty(&obj->pushst))
        {
            STPush(&obj->popst, STTop(&obj->pushst));
            STPop(&obj->pushst);
        }
    }

    return STTop(&obj->popst);
}

bool myQueueEmpty(MyQueue* obj) 
{
    return STEmpty(&obj->pushst)&&STEmpty(&obj->popst);
}

void myQueueFree(MyQueue* obj) 
{
    STDestroy(&obj->popst);
    STDestroy(&obj->pushst);

    free(obj);
    obj =NULL;
}

/**
 * Your MyQueue struct will be instantiated and called as such:
 * MyQueue* obj = myQueueCreate();
 * myQueuePush(obj, x);
 
 * int param_2 = myQueuePop(obj);
 
 * int param_3 = myQueuePeek(obj);
 
 * bool param_4 = myQueueEmpty(obj);
 
 * myQueueFree(obj);
*/

设计循环队列。

622. 设计循环队列 - 力扣(LeetCode)

image-20240406140224464

typedef struct 
{
    int* a;
    int k;//容量
    int front;
    int back;
} MyCircularQueue;



MyCircularQueue* myCircularQueueCreate(int k) 
{
    MyCircularQueue* obj=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    obj->a = (int*)malloc(sizeof(int)* (k+1));
    obj->k = k;
    obj->front = 0;
    obj->back = 0;

    return obj;
}

bool myCircularQueueIsEmpty(MyCircularQueue* obj) 
{
    return obj->front == obj->back;
}

bool myCircularQueueIsFull(MyCircularQueue* obj) 
{
    return (obj->back+1)%(obj->k+1) == obj->front;
}

bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) 
{
    if(myCircularQueueIsFull(obj))
    {
        return false;
    }
    obj->a[obj->back]=value;
    obj->back++;
    obj->back %= (obj->k+1);
    return true;
}

bool myCircularQueueDeQueue(MyCircularQueue* obj) 
{
    if(myCircularQueueIsEmpty(obj))
        return false; 
    obj->front++;
    obj->front %= (obj->k+1);
    return true;
}

int myCircularQueueFront(MyCircularQueue* obj) 
{
     if(myCircularQueueIsEmpty(obj))
        return -1;
    else
        return obj->a[obj->front];
}

int myCircularQueueRear(MyCircularQueue* obj) 
{
    if(myCircularQueueIsEmpty(obj))
        return -1;
    else
        return obj->a[(obj->back-1 + obj->k+1) % (obj->k+1)];
}



void myCircularQueueFree(MyCircularQueue* obj) 
{
    free(obj->a);
    free(obj);
}

/**
 * Your MyCircularQueue struct will be instantiated and called as such:
 * MyCircularQueue* obj = myCircularQueueCreate(k);
 * bool param_1 = myCircularQueueEnQueue(obj, value);
 
 * bool param_2 = myCircularQueueDeQueue(obj);
 
 * int param_3 = myCircularQueueFront(obj);
 
 * int param_4 = myCircularQueueRear(obj);
 
 * bool param_5 = myCircularQueueIsEmpty(obj);
 
 * bool param_6 = myCircularQueueIsFull(obj);
 
 * myCircularQueueFree(obj);
*/

QueueIsEmpty(obj))
return false;
obj->front++;
obj->front %= (obj->k+1);
return true;
}

int myCircularQueueFront(MyCircularQueue* obj)
{
if(myCircularQueueIsEmpty(obj))
return -1;
else
return obj->a[obj->front];
}

int myCircularQueueRear(MyCircularQueue* obj)
{
if(myCircularQueueIsEmpty(obj))
return -1;
else
return obj->a[(obj->back-1 + obj->k+1) % (obj->k+1)];
}

void myCircularQueueFree(MyCircularQueue* obj)
{
free(obj->a);
free(obj);
}

/**

  • Your MyCircularQueue struct will be instantiated and called as such:

  • MyCircularQueue* obj = myCircularQueueCreate(k);

  • bool param_1 = myCircularQueueEnQueue(obj, value);

  • bool param_2 = myCircularQueueDeQueue(obj);

  • int param_3 = myCircularQueueFront(obj);

  • int param_4 = myCircularQueueRear(obj);

  • bool param_5 = myCircularQueueIsEmpty(obj);

  • bool param_6 = myCircularQueueIsFull(obj);

  • myCircularQueueFree(obj);
    */


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1572994.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

YOLOv5实战记录05 Pyside6可视化界面

个人打卡&#xff0c;慎看。 指路大佬&#xff1a;【手把手带你实战YOLOv5-入门篇】YOLOv5 Pyside6可视化界面_哔哩哔哩_bilibili 零、虚拟环境迁移路径后pip报错解决 yolov5-master文件夹我换位置后&#xff0c;无法pip install了。解决如下&#xff1a; activate.bat中修改…

关系型数据库与非关系型数据库、Redis数据库

相比于其他的内存/缓存数据库&#xff0c;redis可以方便的实现持久化的功能&#xff08;保存至磁盘中&#xff09; 一、关系数据库与非关系型数据库 1.1 关系型数据库 一个结构化的数据库&#xff0c;创建在关系模型基础上一般面向于记录 SQL语句 (标准数据查询语言) 就是一种…

11-pyspark的RDD的变换与动作算子总结

目录 前言 变换算子动作算子 前言 一般来说&#xff0c;RDD包括两个操作算子&#xff1a; 变换&#xff08;Transformations&#xff09;&#xff1a;变换算子的特点是懒执行&#xff0c;变换操作并不会立刻执行&#xff0c;而是需要等到有动作&#xff08;Actions&#xff09;…

大语言模型落地的关键技术:RAG

1、什么是RAG&#xff1f; RAG 是检索增强生成&#xff08;Retrieval-Augmented Generation&#xff09;的简称&#xff0c;是当前最火热的大语言模型应用落地的关键技术&#xff0c;主要用于提高语言模型的效果和准确性。它结合了两种主要的NLP方法&#xff1a;检索&#xff…

【智能排班系统】AOP实现操作日志自动记录

文章目录 操作日志介绍自动保存操作日志基本实现思路定义注解枚举业务类型枚举操作人员类型枚举 AOP具体实现方法上添加注解 日志增删改查日志表sql实体类ServiceControllerVo 操作日志介绍 操作日志是对系统或应用程序中所有用户操作、系统事件、后台任务等进行详细记录的文本…

代码随想录算法训练营Day46|LC139 单词拆分

一句话总结&#xff1a;完全背包&#xff01; 原题链接&#xff1a;139 单词拆分 动态规划之完全背包五部曲&#xff1a; 确定dp数组与下标含义&#xff1a;表示字符串长度为i时&#xff0c;dp[i] true 的话&#xff0c;可以拆分为一个或多个在字典中出现的单词。确定递归公…

贪心算法|122.买卖股票的最佳时机II

力扣题目链接 class Solution { public:int maxProfit(vector<int>& prices) {int result 0;for (int i 1; i < prices.size(); i) {result max(prices[i] - prices[i - 1], 0);}return result;} }; 贪心思路出来了&#xff0c;代码居然如此简单啊&#xff0…

16.Python多线程

如果想让我们的程序同时执行多个任务&#xff0c;就需要使用多线程技术了 。到目前为止&#xff0c;我们编写的程序都是单线程的&#xff0c;在运行时一次只能执行 一个任务。 1 线程相关的知识 1.1 进程 一个进程就是一个正在执行的程序&#xff0c;每一个进程都有自己独立…

软考高级架构师:嵌入式处理器体系结构

一、AI 讲解 嵌入式处理器体系结构中&#xff0c;冯诺依曼结构和哈佛结构是两种最基本的设计模式&#xff0c;它们各有特点和典型应用场景。 结构定义特点典型应用冯诺依曼结构一种将程序存储器和数据存储器合并在同一存储器中的计算机体系结构。这意味着指令和数据共享同一个…

基于javassm实现的水果销售管理网站

开发语言&#xff1a;Java 框架&#xff1a;ssm 技术&#xff1a;JSP JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09; 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclip…

【C++航海王:追寻罗杰的编程之路】C++的类型转换

目录 1 -> C语言中的类型转换 2 -> 为什么C需要四种类型转换 3 -> C强制类型转换 3.1 -> static_cast 3.2 -> reinterpret_cast 3.3 -> const_cast 3.4 -> dynamic_cast 4 -> RTTI 1 -> C语言中的类型转换 在C语言中&#xff0c;如果赋值运…

【攻防世界】FlatScience

dirsearch 扫描发现四个文件 在login.php 中发现 输入 http://61.147.171.105:61912/login.php/?debug 发现源码 <?php if(isset($_POST[usr]) && isset($_POST[pw])){$user $_POST[usr];$pass $_POST[pw];$db new SQLite3(../fancy.db);$res $db->query(…

【STM32】存储器和位带映射(bit band mapping)

文章目录 0 前言1 关于地址和存储器2 STM32内部存储器3 位带映射&#xff08;bit band mapping&#xff09;4 扩展&#xff1a;IAP 0 前言 最近在研究stm32标准库&#xff0c;对使用宏定义实现位操作的函数非常感兴趣&#xff0c;简单的一句PAout(1) 0;就能实现某个引脚电平的…

【JavaWeb】Day35.MySQL概述——数据库设计-DDL(二)

表操作 关于表结构的操作也是包含四个部分&#xff1a;创建表、查询表、修改表、删除表。 1.创建 语法 create table 表名( 字段1 字段1类型 [约束] [comment 字段1注释 ], 字段2 字段2类型 [约束] [comment 字段2注释 ], ...... 字段n 字段n类型 [约束] [comment …

phpstorm设置头部注释和自定义注释内容

先说设置位置&#xff1a; PhpStorm中文件、类、函数等注释的设置在&#xff1a;setting-》Editor-》FIle and Code Template-》Includes-》PHP Function Doc Comment下设置即可&#xff0c;其中方法的默认是这样的&#xff1a; /** ${PARAM_DOC} #if (${TYPE_HINT} ! "…

SpringBoot新增员工模块开发

需求分析与设计 一&#xff1a;产品原型 一般在做需求分析时&#xff0c;往往都是对照着产品原型进行分析&#xff0c;因为产品原型比较直观&#xff0c;便于我们理解业务。 后台系统中可以管理员工信息&#xff0c;通过新增员工来添加后台系统用户。 新增员工原型&#xf…

4.1 JavaScript的使用

JavaScript有两种使用方式&#xff1a;一是在HTML文档中直接添加代码&#xff1b;二是将JavaScript脚本代码写到外部的JavaScript文件中&#xff0c;再在HTML文档中引用该文件的路径地址。 这两种使用方式的效果完全相同&#xff0c;可以根据使用率和代码量选择相应的开发方式。…

【ControlNet v3版本论文阅读】

网络部分最好有LDM或者Stable Diffusion的基础&#xff0c;有基础的话会看的很轻松 Abstract 1.提出了一种网络结构支持额外输入条件控制大型预训练的扩散模型。利用预训练模型学习一组不同的条件控制。 2.ControlNet对于小型&#xff08;<50k&#xff09;或大型&#xff…

经典机器学习模型(九)EM算法在高斯混合模型中的应用

经典机器学习模型(九)EM算法在高斯混合模型中的应用 EM算法的推导可以参考&#xff1a; 经典机器学习模型(九)EM算法的推导 若随机变量X服从一个数学期望为 μ μ μ、方差为 σ 2 σ^2 σ2的正态分布&#xff0c;可以记为 N ( μ &#xff0c; σ 2 ) N(μ&#xff0c;σ2)…

二叉树进阶——手撕二叉搜索树

troop主页&#xff1a;troop 手撕二叉搜索树 1.二叉搜索树的定义2.实现&#xff08;非递归&#xff09;补充结构2.1查找2.2插入2.3删除&#xff08;重要&#xff09;情况1(无孩子&&一个孩子&#xff09; 3.二叉搜索树的应用3.1K模型3.2KV模型3.2.1KV模型的实现 总结二叉…