【Python使用】嘿马头条完整开发md笔记第4篇:数据库,1 方案选择【附代码文档】

news2024/11/20 15:18:27

嘿马头条项目从到完整开发笔记总结完整教程(附代码资料)主要内容讲述:课程简介,ToutiaoWeb虚拟机使用说明1 产品介绍,2 原型图与UI图,3 技术架构,4 开发,1 需求,2 注意事项。数据库,理解ORM1 简介,2 安装,3 数据库连接设置,4 模型类字段与选项,5 构建模型类映射。数据库,SQLAlchemy操作1 新增,2 查询,3 更新,4 删除,5 事务,1. 复制集与分布式。数据库,分布式ID1 方案选择,2 头条,1 理解索引,2 SQL查询优化,3 数据库优化。数据库,Redis1 Redis事务,2 Redis持久化,3 Redis高可用,4 Redis集群,5 用途,6 相关补充阅读。Git工用流,调试方法。OSS对象存储,七牛云存储。缓存,缓存架构缓存数据的类型,缓存数据的保存方式,有效期 TTL (Time to live),缓存淘汰 eviction。缓存,缓存问题1 缓存穿透,2 缓存雪崩,缓存设计,持久存储设计。APScheduler定时任务,定时修正统计数据1. 什么是RPC,2. 背景与用途,3. 概念说明,4. 优缺点,架构,使用方法。RPC,编写客户端。即时通讯,Socket.IO1 简介,2 Python服务器端开发,3 Python客户端。Elasticsearch,简介与原理概念,Elasticsearch 集群(cluster),索引,类型和映射。Elasticsearch,文档。单元测试,部署相关数据库性能,缓存雪崩,缓存编写。缓存模式缓存的架构,缓存数据,缓存数据的有效期和淘汰策略,淘汰策略,头条项目缓存数据的设计。

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


全套教程部分目录:


部分文件图片:

数据库

  • 数据库设计

  • SQLAlchemy

  • 数据库理论

  • 分布式ID

  • Redis

分布式ID

1 方案选择

  • UUID

UUID是通用唯一识别码(Universally Unique Identifier)的缩写,开放软件基金会(OSF)规范定义了包括网卡MAC地址、时间戳、名字空间(Namespace)、随机或伪随机数、时序等元素。利用这些元素来生成UUID。

UUID是由128位二进制组成,一般转换成十六进制,然后用String表示。

550e8400-e29b-41d4-a716-446655440000

UUID的优点:

  • 通过本地生成,没有经过网络I/O,性能较快
  • 无序,无法预测他的生成顺序。(当然这个也是他的缺点之一)

UUID的缺点:

  • 128位二进制一般转换成36位的16进制,太长了只能用String存储,空间占用较多。
  • 不能生成递增有序的数字

  • 数据库主键自增

大家对于唯一标识最容易想到的就是主键自增,这个也是我们最常用的方法。例如我们有个订单服务,那么把订单id设置为主键自增即可。

  • 单独数据库 记录主键值

  • 业务数据库分别设置不同的自增起始值和固定步长,如

第一台 start 1  step 9 
   第二台 start 2  step 9 
   第三台 start 3  step 9

优点:

  • 简单方便,有序递增,方便排序和分页

缺点:

  • 分库分表会带来问题,需要进行改造。
  • 并发性能不高,受限于数据库的性能。
  • 简单递增容易被其他人猜测利用,比如你有一个用户服务用的递增,那么其他人可以根据分析注册的用户ID来得到当天你的服务有多少人注册,从而就能猜测出你这个服务当前的一个大概状况。
  • 数据库宕机服务不可用。

  • Redis

熟悉Redis的同学,应该知道在Redis中有两个命令Incr,IncrBy,因为Redis是单线程的所以能保证原子性。

优点:

  • 性能比数据库好,能满足有序递增。

缺点:

  • 由于redis是内存的KV数据库,即使有AOF和RDB,但是依然会存在数据丢失,有可能会造成ID重复。
  • 依赖于redis,redis要是不稳定,会影响ID生成。

  • 雪花算法-Snowflake

Snowflake是Twitter提出来的一个算法,其目的是生成一个64bit的整数:

snowflake

  • 1bit:一般是符号位,不做处理
  • 41bit:用来记录时间戳,这里可以记录69年,如果设置好起始时间比如今年是2018年,那么可以用到2089年,到时候怎么办?要是这个系统能用69年,我相信这个系统早都重构了好多次了。
  • 10bit:10bit用来记录机器ID,总共可以记录1024台机器,一般用前5位代表数据中心,后面5位是某个数据中心的机器ID
  • 12bit:循环位,用来对同一个毫秒之内产生不同的ID,12位可以最多记录4095个,也就是在同一个机器同一毫秒最多记录4095个,多余的需要进行等待下毫秒。

上面只是一个将64bit划分的标准,当然也不一定这么做,可以根据不同业务的具体场景来划分,比如下面给出一个业务场景:

  • 服务目前QPS10万,预计几年之内会发展到百万。
  • 当前机器三地部署,上海,北京,深圳都有。
  • 当前机器10台左右,预计未来会增加至百台。

这个时候我们根据上面的场景可以再次合理的划分62bit,QPS几年之内会发展到百万,那么每毫秒就是千级的请求,目前10台机器那么每台机器承担百级的请求,为了保证扩展,后面的循环位可以限制到1024,也就是2^10,那么循环位10位就足够了。

机器三地部署我们可以用3bit总共8来表示机房位置,当前的机器10台,为了保证扩展到百台那么可以用7bit 128来表示,时间位依然是41bit,那么还剩下64-10-3-7-41-1 = 2bit,还剩下2bit可以用来进行扩展。

snowflake

时钟回拨

因为机器的原因会发生时间回拨,我们的雪花算法是强依赖我们的时间的,如果时间发生回拨,有可能会生成重复的ID,在我们上面的nextId中我们用当前时间和上一次的时间进行判断,如果当前时间小于上一次的时间那么肯定是发生了回拨,算法会直接抛出异常.

2 头条

使用雪花算法 (代码 toutiao-backend/common/utils/snowflake)
# Twitter's Snowflake algorithm implementation which is used to generate distributed IDs.




# 



import time
import logging

class InvalidSystemClock(Exception):
    """
    时钟回拨异常
    """
    pass



# 64位ID的划分


WORKER_ID_BITS = 5
DATACENTER_ID_BITS = 5
SEQUENCE_BITS = 12



# 最大取值计算


MAX_WORKER_ID = -1 ^ (-1 << WORKER_ID_BITS)  # 2**5-1 0b11111
MAX_DATACENTER_ID = -1 ^ (-1 << DATACENTER_ID_BITS)



# 移位偏移计算


WOKER_ID_SHIFT = SEQUENCE_BITS
DATACENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS
TIMESTAMP_LEFT_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATACENTER_ID_BITS



# 序号循环掩码


SEQUENCE_MASK = -1 ^ (-1 << SEQUENCE_BITS)



# Twitter元年时间戳


TWEPOCH = 1288834974657


logger = logging.getLogger('flask.app')


class IdWorker(object):
    """
    用于生成IDs
    """

    def __init__(self, datacenter_id, worker_id, sequence=0):
        """
        初始化
        :param datacenter_id: 数据中心(机器区域)ID
        :param worker_id: 机器ID
        :param sequence: 其实序号
        """
        # sanity check
        if worker_id > MAX_WORKER_ID or worker_id < 0:
            raise ValueError('worker_id值越界')

        if datacenter_id > MAX_DATACENTER_ID or datacenter_id < 0:
            raise ValueError('datacenter_id值越界')

        self.worker_id = worker_id
        self.datacenter_id = datacenter_id
        self.sequence = sequence

        self.last_timestamp = -1  # 上次计算的时间戳

    def _gen_timestamp(self):
        """
        生成整数时间戳
        :return:int timestamp
        """
        return int(time.time() * 1000)

    def get_id(self):
        """
        获取新ID
        :return:
        """
        timestamp = self._gen_timestamp()

        # 时钟回拨
        if timestamp < self.last_timestamp:
            logging.error('clock is moving backwards. Rejecting requests until {}'.format(self.last_timestamp))
            raise InvalidSystemClock

        if timestamp == self.last_timestamp:
            self.sequence = (self.sequence + 1) & SEQUENCE_MASK
            if self.sequence == 0:
                timestamp = self._til_next_millis(self.last_timestamp)
        else:
            self.sequence = 0

        self.last_timestamp = timestamp

        new_id = ((timestamp - TWEPOCH) << TIMESTAMP_LEFT_SHIFT) | (self.datacenter_id << DATACENTER_ID_SHIFT) | \
                 (self.worker_id << WOKER_ID_SHIFT) | self.sequence
        return new_id

    def _til_next_millis(self, last_timestamp):
        """
        等到下一毫秒
        """
        timestamp = self._gen_timestamp()
        while timestamp <= last_timestamp:
            timestamp = self._gen_timestamp()
        return timestamp


if __name__ == '__main__':
    worker = IdWorker(1, 2, 0)
    print(worker.get_id())

数据库优化

数据库是Web应用至关重要的一个环节,其性能的优劣会影响整合Web应用,所以需要对数据库进化优化以提高使用性能。以下提供几点方法作为参考。

1 理解索引

数据库索引

2 SQL查询优化

  • 避免全表扫描,应考虑在 where 及 order by 涉及的列上建立索引;

  • 查询时使用select明确指明所要查询的字段,避免使用select *的操作;

  • SQL语句尽量大写,如

SELECT name FROM t WHERE id=1

对于小写的sql语句,通常数据库在解析sql语句时,通常会先转换成大写再执行。

  • 尽量避免在 where 子句中使用!=或<>操作符, MySQL只有对以下操作符才使用索引:<,<=,=,>,>=,BETWEEN,IN,以及某些时候的LIKE;
SELECT id FROM t WHERE name LIKE ‘abc%’
  • 对于模糊查询,如:
SELECT id FROM t WHERE name LIKE ‘%abc%’

或者

SELECT id FROM t WHERE name LIKE ‘%abc’

将导致全表扫描,应避免使用,若要提高效率,可以考虑全文检索;

  • 遵循最左原则,在where子句中写查询条件时把索引字段放在前面,如
mobile为索引字段,name为非索引字段
  推荐
  SELECT ... FROM t WHERE mobile='13911111111' AND name='python'
  不推荐
  SELECT ... FROM t WHERE name='python' AND mobile='13911111111' 

  建立了复合索引 key(a, b, c)
  推荐
  SELECT ... FROM t WHERE a=... AND b=... AND c= ...
  SELECT ... FROM t WHERE a=... AND b=...
  SELECT ... FROM t WHERE a=...
  不推荐 (字段出现顺序不符合索引建立的顺序)
  SELECT ... FROM t WHERE b=... AND c=...
  SELECT ... FROM t WHERE b=... AND a=... AND c=...
  ...
  • 能使用关联查询解决的尽量不要使用子查询,如
子查询
  SELECT article_id, title FROM t_article WHERE user_id IN (SELECT user_id FROM t_user  WHERE user_name IN ('itcast', 'itheima', 'python'))

  关联查询(推荐)
  SELECT b.article_id, b.title From t_user AS a INNER JOIN t_article AS b ON a.user_id=b.user_id WHERE a.user_name IN ('itcast', 'itheima', 'python');

能不使用关联查询的尽量不要使用关联查询;

  • 不需要获取全表数据的时候,不要查询全表数据,使用LIMIT来限制数据。

3 数据库优化

  • 在进行表设计时,可适度增加冗余字段(反范式设计),减少JOIN操作;
  • 多字段表可以进行垂直分表优化,多数据表可以进行水平分表优化;
  • 选择恰当的数据类型,如整型的选择;
  • 对于强调快速读取的操作,可以考虑使用MyISAM数据库引擎;
  • 对较频繁的作为查询条件的字段创建索引;唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件;更新非常频繁的字段不适合创建索引;
  • 编写SQL时使用上面的方式对SQL语句进行优化;
  • 使用慢查询工具找出效率低下的SQL语句进行优化;
  • 构建缓存,减少数据库磁盘操作;
  • 可以考虑结合使用内在型数据库,如Redis,进行混合存储。

未完待续, 同学们请等待下一期

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1572746.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MPLS基本转发过程,隧道特性、对TTL的处理、BGP路由黑洞

MPLS基本转发过程&#xff0c;隧道特性 标签操作类型包括标签压入&#xff08;Push&#xff09;、标签交换&#xff08;Swap&#xff09;和标签弹出&#xff08;Pop&#xff09;&#xff0c;它们是标签转发的基本动作。 倒数第二跳弹出特性PHP&#xff08;Penultimate Hop Popp…

并查集python实现及题目练习

文章目录 1. 并查集概念1.1 理解并查集&#xff1a;简介与应用场景1.2 Python 实现并查集及优化策略1.3 扁平化栈实现1.4 分析并查集的时间复杂度 2. 情侣牵手3. 相似字符串4. 岛屿数量 如果想了解并查集基础推荐去看左程云大神的算法讲解&#xff0c;非常不错&#xff0c;b站和…

InterlliJ Debug方式启动 method breakpoints may dramatically show down debugging

使用idea在DEBUG的时候出现Method breakpoints may dramatically slow down debugging&#xff0c; 如图&#xff1a; 根据语义可能是断点打在方法上面了&#xff0c;导致在某个断点卡住了。 重启服务器和重启idea已然无解。 打开Breakpoints面板看看&#xff0c;(快捷键&…

递归实现排列型枚举(acwing)

题目描述&#xff1a; 把 1∼n 这 n 个整数排成一行后随机打乱顺序&#xff0c;输出所有可能的次序。 输入格式&#xff1a; 一个整数 n。 输出格式&#xff1a; 按照从小到大的顺序输出所有方案&#xff0c;每行 1 个。 首先&#xff0c;同一行相邻两个数用一个空格隔开…

mac、windows 电脑安装使用多个版本的node

我们为啥要安装多个不同版本的node&#xff1f; 开发旧项目时&#xff0c;使用低版本Nodejs。开发新项目时&#xff0c;需使用高版本Node.js。可使用n同时安装多个版本Node.js&#xff0c;并切换到指定版本Node.js。 mac电脑安装 一、全局安装 npm install -g n 二、mac电脑…

淘宝优惠券领取软件叫什么?

草柴返利APP是一款淘宝优惠券领取软件。用户可以通过草柴淘宝优惠券领取软件轻松查找领取淘宝大额隐藏优惠券&#xff0c;领取成功后再购物可享受券后价优惠。同时&#xff0c;通过草柴APP领券购买成功&#xff0c;确认收货后再回到草柴APP提取购物返利&#xff0c;享受双重省钱…

idea maven 打包 内存溢出 报 GC overhead limit exceeded -> [Help 1]

idea 使用maven打包 报GC overhead limit exceeded -> [Help 1] 解决方法&#xff1a; 打开settings -> 点开如同所示 将 vm Options 参数 设为 -Xmx8g

记第一次eudsrc拿到RCE(下)

目录 前言 个人介绍 挖洞公式 漏洞介绍 信息泄露漏洞 任意文件读取漏洞 远程命令执行&#xff08;RCE&#xff09;漏洞 漏洞详情 漏洞点1 漏洞点2 漏洞点3 修复建议 总结 前言 免责声明 以下漏洞均已经上报漏洞平台。请勿利用文章内的相关技术从事非法测试。若因…

Autosar BswM 模式管理

EcuMs管理ECU上下电状态,BswM管理模式,协同工作。当使用EcuM - Fixed时,它将向BswM指示当前ECU状态 有了BswM,从图可以更加直观看出,BswM管理各个模块,每个模块独立,降低耦合。 BswM 的主要功能包括: 模式管理:BswM 可以管理和控制 ECU 的不同模式,例如正常模式、备…

AJAX 原理

一、AJAX原理 - XMLHttpRequest 定义&#xff1a; 关系&#xff1a;axios 内部采用 XMLHttpRequest 与服务器交互。 好处&#xff1a;掌握使用 XHR 与服务器进行数据交互&#xff0c;了解 axios 内部原理。 1.1 使用 XMLHttpRequest&#xff1a; 步骤&#xff1a; 1. 创建 XM…

免注册,ChatGPT可即时访问了!

AI又有啥进展&#xff1f;一起看看吧 Apple进军个人家用机器人 Apple在放弃自动驾驶汽车项目并推出混合现实头显后&#xff0c;正在进军个人机器人领域&#xff0c;处于开发家用环境机器人的早期阶段 报告中提到了两种可能的机器人设计。一种是移动机器人&#xff0c;可以跟…

【机器学习300问】60、图像分类任务中,训练数据不足会带来什么问题?如何缓解图像数据不足带来的问题?

在机器学习中&#xff0c;绝大部分模型都需要大量的数据进行训练和学习&#xff08;包括有监督学习和无监督学习&#xff09;&#xff0c;然而在实际应用中经常会遇到训练数据不足的问题。就比如图像分类这样的计算机视觉任务&#xff0c;确实依赖于大规模且多样化的训练数据以…

Java笔试总结

. 操作系统中关于竞争和死锁的关系下面描述正确的是&#xff1f; A 竞争一定会导致死锁 B 死锁一定由竞争引起 C 竞争可能引起死锁 D 预防死锁可以防止竞争 答案: C 进程的控制信息和描述信息存放在()。 A JCB B PCB C AFT D SFT 答案: B 当系统发生抖动&#xff08;thrash…

企业数据资产入表的基本原则、参与主体和一般实现路线

目录 引言 一、企业数据资产入表的基本原则 1、准确性原则 2、一致性原则 3、安全性原则 4、可扩展性原则 5、合法合规原则 6、谨慎性原则 7、商业秘密保护原则 二、企业数据资产入表的参与主体 1、企业内部参与部门 2、企业外部参与机构 三、企业数据资产入表的一…

瑞_Redis_商户查询缓存_添加Redis缓存缓存更新策略

文章目录 项目介绍1 短信登录2 商户查询缓存2.1 什么是缓存2.1.1 缓存的应用场景2.1.2 为什么要使用缓存2.1.3 Web应用中缓存的作用2.1.4 Web应用中缓存的成本 2.2 添加Redis缓存2.2.1 背景2.2.2 缓存模型和思路2.2.3 代码实现2.2.4 测试附&#xff1a;IDEA控制台输出自动换行设…

阿里云2核2G和2核4G轻量应用服务器优惠价格表,2024年最新报价

阿里云轻量应用服务器2核2G和2核4G配置优惠价格表&#xff0c;轻量2核2G3M带宽61元一年&#xff0c;轻量2核4G4M带宽165元1年&#xff0c;均不限制月流量&#xff0c;阿里云活动链接 aliyunfuwuqi.com/go/aliyun 活动打开如下图&#xff1a; 阿里云轻量应用服务器价格 61元/年…

《QT实用小工具·七》CPU内存显示控件

1、概述 源码放在文章末尾 CPU内存显示控件 项目包含的功能如下&#xff1a; 实时显示当前CPU占用率。实时显示内存使用情况。包括共多少内存、已使用多少内存。全平台通用&#xff0c;包括windows、linux、ARM。发出信号通知占用率和内存使用情况等&#xff0c;以便自行显示…

ubuntu-server部署hive-part1-安装jdk

参照 https://blog.csdn.net/qq_41946216/article/details/134345137 操作系统版本&#xff1a;ubuntu-server-22.04.3 虚拟机&#xff1a;virtualbox7.0 安装jdk 上传解压 以root用户&#xff0c;将jdk上传至/opt目录下 tar zxvf jdk-8u271-linux-x64.tar.gz 配置环境变量…

2_6.Linux高级存储管理

##1.逻辑卷## pv ##物理卷 被处理过的物理分区 pe ##物理扩展 设定存储最小单元 vg ##物理卷组 捆绑pv到一个组中 lv ##逻辑卷 分配最终的使用设备 监控建立过程&#xff1a; watch -n 1 "pvs;echo ;vgs;echo ;lvs;echo ;df -h /weixindata" &#xff08;1&#xf…

【C++ STL有序关联容器】map 映射

文章目录 【 1. 基本原理 】【 2. map 的创建 】2.1 调用默认构造函数&#xff0c;创建一个空的 map2.2 map 被构造的同时初始化2.3 通过一个 queue 初始化另一个 queue2.4 取已建 map 中指定区域内的键值对&#xff0c;初始化新的 map2.5 指定排序规则 【 2. map 元素的操作 】…