【机器学习300问】60、图像分类任务中,训练数据不足会带来什么问题?如何缓解图像数据不足带来的问题?

news2024/11/20 15:36:57

        在机器学习中,绝大部分模型都需要大量的数据进行训练和学习(包括有监督学习和无监督学习),然而在实际应用中经常会遇到训练数据不足的问题。就比如图像分类这样的计算机视觉任务,确实依赖于大规模且多样化的训练数据以确保模型能够有效地泛化到未见过的实例上。然而,实践中遭遇训练数据不足是很常见的挑战。当训练一个图像分类模型时,如果训练样本比较少,该如何处理呢?

一、训练数据不足会造成什么问题?

(1)过拟合

        图像分类任务上,训练数据不足带来的问题主要表现在过拟合方面。处理策略大致可以归纳为两大类:

  • 依赖模型的方法:其核心在于采取降低过拟合风险的策略。这包括简化模型结构(例如,将复杂的非线性模型简化为更易处理的线性模型)、引入正则化项以缩小模型假设空间(如采用L1或L2正则化技术)、运用集成学习方法以及调整Dropout超参数等手段。
  • 基于数据的方法:主要通过数据增强技术来实施。这类方法依据特定的先验知识,在保留关键信息的同时对原始数据进行合适的转换,旨在扩展数据集并提高模型的泛化能力。

(2)欠拟合

        在图像分类任务上,训练数据不足也有可能带来欠拟合的问题。欠拟合是指模型的复杂度不足以捕捉到数据集中的所有重要特征和模式,导致模型在训练集上的表现也不理想,更不用说在未见过的测试集上了。当训练数据不足时,模型可能无法从有限的样本中学习到足够的信息来概括整个数据分布,表现为模型的泛化能力较弱。

        可以通过上面的两种思路来尝试缓解欠拟合:

  • 依赖模型的方法:使用更大规模或者更深层次的神经网络结构,使模型具有更强的学习能力来捕捉数据中的复杂关系。或使用迁移学习、集成学习的方法。
  • 基于数据的方法:数据增强技术,对现有的少量训练数据进行各种变换,例如旋转、翻转、裁剪、缩放、颜色抖动等,以模拟更多的训练样本。

        关于跟多过拟合与欠拟合的概念,可以看看我之前的文章:
【机器学习300问】27、高偏差与高方差是什么?他们对评估机器学习模型起何作用?icon-default.png?t=N7T8http://t.csdnimg.cn/EalJu

二、如何解决数据不足带来的问题?

        这里有很多方法,我之前的文章已经讲过了,我在本文中拓展将一下图像的数据增强技术。 

(1)迁移学习

         利用预训练的深度学习模型,保留其底层特征提取层,并在顶部添加新的全连接层或卷积层,仅用少量标注图像对该部分进行微调。

【机器学习300问】37、什么是迁移学习?icon-default.png?t=N7T8http://t.csdnimg.cn/Q7aQQ

(2)欠采样/过采样技术

         对于类别不平衡问题,可以通过欠采样冗余类别或过采样少数类别的方法来平衡数据分布。

【机器学习300问】31、不平衡数据集如何进行机器学习?icon-default.png?t=N7T8http://t.csdnimg.cn/f8SL8

(3)数据增强

        通过对现有的图像数据进行各种变换,如翻转、旋转、裁剪、缩放、颜色抖动、平移等操作,生成新的训练样本,从而扩大训练集的大小而不引入额外的真实数据。

【机器学习300问】29、训练数据少该怎么办?数据增强icon-default.png?t=N7T8http://t.csdnimg.cn/uhLP5

① 色彩空间转换

        比如手势识别中,如果图像训练数据过少,可以采取颜色变换的方式增加图像。图像处理中常见的颜色空间分布有 RGB、HSV 和 YCrCb 三种空间模型。比较这三种空间模型后发现 RGB 空间由于亮度信息存在三个颜色通道中,并不相互独立,难以从 RGB 颜色空间中有效提取出手势的肤色信息,而 YCrCb 和 HSV 颜色空间都具有亮度与色度相分离的特点,并且肤色范围紧密,不易受光照后其他物体的干扰,相对来说更适用提取手势的肤色信息。RGB 与 YCrCb 空间转化的计算公式如下所示。

        这里的R、G、B代表原始RGB颜色空间中的红色、绿色和蓝色通道值,Y是计算出的亮度值,Cb和Cr是对应于蓝色和红色的色度分量。公式中加上的128是为了将色度分量的取值范围从-127至128调整到0至255的标准8位颜色值区间。通过这种转换后,可以根据Cr和Cb的值来判断像素是否属于肤色区域。

② 二值化

        图像的二值化处理是将图像上所有像素点的灰度值设置为 0 或者 255 过程,使得整个图像呈现出明显的黑白效果,通常选取一个合适的阈值,当图像中像素值大于或者等于阈值时判定为前景,将其值设为 255,反之则判定为背景,将其值设为 0。图像的二值化使得图像变得简单明了,通过前景和背景的像素值重置可以有效降低背景噪声,在一定程度增强了特征。

        下面介绍一个常用的选取合适阈值的方法——最大类间方差法(也称Otsu)。其基本思想是将图像看做前景目标和背景环境两个部分组成,用两部分像素值的方差来估计前景目标和背景环境之间的差别,通过像素划分各部分出现的概率和平均灰度级来计算两部分的方差,得到使得前景目标和环境背景的类间方差达到最大的灰度级值默认为最佳阈值。最佳阈值的标准判别公式如下所示。

 \sigma_{\text{b}}^2(t) = \omega_0(t) \omega_1(t) [\mu_0(t) - \mu_1(t)]^2

        其中,t是当前的阈值。\omega_0(t)\omega_1(t)分别是背景(阈值以下)和前景(阈值以上)的像素占比。\mu_0(t)\mu_1(t)分别是背景和前景的像素平均灰度值。\sigma_{\text{b}}^2(t)表示类间方差,即背景与前景之间的差异。Otsu的方法就是通过遍历全部可能的t值,找到最大化\sigma_{\text{b}}^2(t)的那个t值,即最佳阈值。在实践中,最大类间方差法是一种高效且自动的阈值选择方法,尤其在物体识别和图像分割中被广泛使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1572726.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java笔试总结

. 操作系统中关于竞争和死锁的关系下面描述正确的是? A 竞争一定会导致死锁 B 死锁一定由竞争引起 C 竞争可能引起死锁 D 预防死锁可以防止竞争 答案: C 进程的控制信息和描述信息存放在()。 A JCB B PCB C AFT D SFT 答案: B 当系统发生抖动(thrash…

企业数据资产入表的基本原则、参与主体和一般实现路线

目录 引言 一、企业数据资产入表的基本原则 1、准确性原则 2、一致性原则 3、安全性原则 4、可扩展性原则 5、合法合规原则 6、谨慎性原则 7、商业秘密保护原则 二、企业数据资产入表的参与主体 1、企业内部参与部门 2、企业外部参与机构 三、企业数据资产入表的一…

瑞_Redis_商户查询缓存_添加Redis缓存缓存更新策略

文章目录 项目介绍1 短信登录2 商户查询缓存2.1 什么是缓存2.1.1 缓存的应用场景2.1.2 为什么要使用缓存2.1.3 Web应用中缓存的作用2.1.4 Web应用中缓存的成本 2.2 添加Redis缓存2.2.1 背景2.2.2 缓存模型和思路2.2.3 代码实现2.2.4 测试附:IDEA控制台输出自动换行设…

阿里云2核2G和2核4G轻量应用服务器优惠价格表,2024年最新报价

阿里云轻量应用服务器2核2G和2核4G配置优惠价格表,轻量2核2G3M带宽61元一年,轻量2核4G4M带宽165元1年,均不限制月流量,阿里云活动链接 aliyunfuwuqi.com/go/aliyun 活动打开如下图: 阿里云轻量应用服务器价格 61元/年…

《QT实用小工具·七》CPU内存显示控件

1、概述 源码放在文章末尾 CPU内存显示控件 项目包含的功能如下: 实时显示当前CPU占用率。实时显示内存使用情况。包括共多少内存、已使用多少内存。全平台通用,包括windows、linux、ARM。发出信号通知占用率和内存使用情况等,以便自行显示…

ubuntu-server部署hive-part1-安装jdk

参照 https://blog.csdn.net/qq_41946216/article/details/134345137 操作系统版本:ubuntu-server-22.04.3 虚拟机:virtualbox7.0 安装jdk 上传解压 以root用户,将jdk上传至/opt目录下 tar zxvf jdk-8u271-linux-x64.tar.gz 配置环境变量…

2_6.Linux高级存储管理

##1.逻辑卷## pv ##物理卷 被处理过的物理分区 pe ##物理扩展 设定存储最小单元 vg ##物理卷组 捆绑pv到一个组中 lv ##逻辑卷 分配最终的使用设备 监控建立过程: watch -n 1 "pvs;echo ;vgs;echo ;lvs;echo ;df -h /weixindata" (1&#xf…

【C++ STL有序关联容器】map 映射

文章目录 【 1. 基本原理 】【 2. map 的创建 】2.1 调用默认构造函数,创建一个空的 map2.2 map 被构造的同时初始化2.3 通过一个 queue 初始化另一个 queue2.4 取已建 map 中指定区域内的键值对,初始化新的 map2.5 指定排序规则 【 2. map 元素的操作 】…

知识融合:知识图谱构建的关键技术

目录 一、引言二、知识图谱基础2.1 知识表示三元组属性图 2.2 知识抽取实体抽取关系抽取属性抽取 三、知识融合的核心问题3.1 实体识别与链接实体识别实体链接 3.2 重复实体合并方法示例 3.3 关系融合挑战方法示例 四、知识融合技术深度解析4.1 基于规则的方法规则设计原则规则…

噪声的力量:重新定义 RAG 系统的检索

该文得到了一个反常识的结论,当无关的噪声文档放在正确的位置时,实际上有助于提高RAG的准确性。 摘要 检索增强生成(RAG)系统代表了传统大语言模型(大语言模型)的显着进步。 RAG系统通过整合通过信息检索…

Redission--布隆过滤器解决缓存穿透问题

布隆过滤器在缓存穿透问题中的使用 布隆过滤器的核心是一个位数组 布隆过滤器的误判 使用Redission的布隆过滤器步骤 添加 Redission 依赖:首先需要将 Redission 添加到你的 Java 项目中,你可以通过 Maven 来添加 Redission 的依赖。 创建 Redissio…

我的C++奇迹之旅:内联函数和auto关键推导和指针空值

文章目录 📝内联函数🌠 查看内联函数inline方式🌉内联函数特性🌉面试题 🌠auto关键字(C11)🌠 auto的使用细则🌉auto不能推导的场景 🌠基于范围的for循环(C11)🌠范围for的…

Spatio-Temporal Pivotal Graph Neural Networks for Traffie Flow Forecasting

摘要:交通流量预测是一个经典的时空数据挖掘问题,具有许多实际应用。,最近,针对该问题提出了各种基于图神经网络(GNN)的方法,并取得了令人印象深刻的预测性能。然而,我们认为大多数现有方法忽视了某些节点(称为关键节点)的重要性,这些节点自然地与多个其他节点表现出…

IPSEC VPN双机热备份的配置讲解一

IPSEC VPN双机热备份的配置讲解一 VPN 是一种专用网络,可使用公共网络连接两个或两个以上的远程站点。VPN 可使用通过公共网络路由(以隧道方式发送)的虚拟连接,而非网络之间的专用连接。IPsec VPN 是一项协议,由建立 …

使用神经网络-遗传算法优化神经网络-风电预测故障(BP,GABP,matlab)

本项目是故障预测,不是时序预测,本质还是分类问题 1 数据集介绍 特征文件: 标签文件:共计4个标签,其中大多数都是正常的,其他是3个不正常的类别 2 使用BP网络 2.1 读取数据,然后选择几个…

迷茫下是自我提升

长夜漫漫,无心睡眠。心中所想,心中所感,忧愁当前,就执笔而下,写下这篇文章。 回忆过往 回想当初为啥学前端,走前端这条路,学校要求嘛,兴趣爱好嘛,还是为了钱。 时间带着…

【PostgreSQL】技术传承:使用Docker快速部署PostgreSQL数据库

前言 PostgreSQL的重要贡献者Simon Riggs因一起坠机事故不幸离世。Simon Riggs是英国著名的软件与服务领导者,也是PostgreSQL的主要开发者和贡献者。事故发生在英国当地时间3月26日13:41分,当时他驾驶的私人通用航空Cirrus SR22飞机在英国达克斯福德机场…

HTTP详解及代码实现

HTTP详解及代码实现 HTTP超文本传输协议 URL简述状态码常见的状态码 请求方法请求报文响应报文HTTP常见的HeaderHTTP服务器代码 HTTP HTTP的也称为超文本传输协议。解释HTTP我们可以将其分为三个部分来解释:超文本,传输,协议。 超文本 加粗样…

基于Unet的BraTS 3d 脑肿瘤医学图像分割,从nii.gz文件中切分出2D图片数据

1、前言 3D图像分割一直是医疗领域的难题,在这方面nnunet已经成为了标杆,不过nnunet教程较少,本人之前跑了好久,一直目录报错、格式报错,反正哪里都是报错等等。并且,nnunet对于硬件的要求很高&#xff0c…

基于51单片机电子钟闹钟设计

基于51单片机电子钟闹钟设计 (仿真+程序+原理图) 功能介绍 具体功能: 1.LCD1602实时显示时间和闹钟时间; 2.可整点报时。 3.按键设置时间、闹钟。 4.使用蜂鸣器报时和响闹钟; ​演示视频&…