具身智能机器人实现新里程碑!新型3D世界模型问世

news2025/1/17 1:47:39

随着人工智能技术的不断进步,视觉-语言-动作(VLA)模型在机器人控制、自动驾驶、智能助手等领域展现出了广阔的应用前景。这类模型能够将视觉、语言、动作等多模态信息进行融合,实现从感知到决策的端到端学习。然而,现有的VLA模型大多基于二维视觉输入,缺乏对三维物理世界的深入理解和交互能力。此外,它们往往采用从感知到动作的直接映射方式进行决策,忽略了复杂环境动态和行动后果之间的关联。这与人类先建立内在世界模型,再基于想象和预演来规划行动的认知过程存在明显差异。

为了构建更接近人类认知的VLA模型,来自马萨诸塞州大学阿默斯特分校、MIT等机构的提出了3D-VLA,这是一种新型的、具有里程碑式意义的具身基础模型(embodied foundation model),能够通过生成式世界模型无缝连接三维感知、推理和行动!与之前的工作不同,3D-VLA在视觉-语言大模型(VLM)中引入了3D特征,使其能够直接对三维场景进行理解和交互。同时,该模型还具备目标导向的多模态生成能力,能想象未来状态并据此指导动作规划。这一创新框架有望在机器人操控、虚拟助手、元宇宙等场景中得到广泛应用。

论文地址: https://arxiv.org/abs/2403.09631

▍一种新颖的3D视觉-语言-动作生成模型

3D-VLA的核心是建立一个通用的生成式世界模型,将3D感知、推理、预测和规划有机结合。具体而言,该模型以3D-LLM(3D大语言模型)为骨干,通过在其词表中引入一系列交互令牌,如场景、物体、动作等,增强了模型与3D环境互动的能力。在处理输入时,模型先将RGB图像或视频转换为深度图和点云等3D表征,提取关键物体的三维边界框等语义信息。基于这些3D特征,模型能执行空间推理、回答问题、生成目标等多种下游任务。

值得一提的是,3D-VLA还融合了扩散模型来实现多模态目标生成。通过预训练RGB-D到RGB-D、点云到点云的扩散模型,并用对齐器将其与语言编码器的输出对齐,3D-VLA能根据指令灵活地想象未来图像、深度图、点云等表征。相比从高维潜空间采样,这种可控的目标生成方式极大提升了规划的可解释性和针对性。在后续的决策阶段,代理将生成的目标重新输入世界模型,迭代预测和优化行动序列,最终输出可执行的机器人控制指令。

在这里插入图片描述

总的来说,3D-VLA开创了VLA模型与三维世界交互的新范式,使其更贴近真实环境中感知、思考和行动的流程。通过3D感知、多模态推理、目标想象、动作规划的无缝衔接,该模型在建模物理常识、因果关系、时序依赖等方面展现出了初步的类人智能特征。未来,这一具身基础模型有望进一步扩展到实际机器人系统和虚拟人交互中,推动人工智能在环境适应、任务泛化、快速学习等方面的突破。

▍大规模3D具身指令数据集的构建

训练3D-VLA这样大规模的生成式世界模型,离不开海量的多模态数据支持。然而,现有的VLA数据集大多聚焦在视频-文本对上,缺乏精细的3D标注。为此,研究者们从公开的机器人操控、人体-物体交互等数据集中,自动化地提取了丰富的3D-语言-动作三元组。

具体而言,他们先利用ZoeDepth等方法从RGB视频中估计深度信息,将其还原为点云;接着采用基于Grounded-SAM的目标检测模型获取物体的3D边界框;并通过光流估计、遮挡分析等手段从视频中确定关键帧作为子目标。-cloud>等特殊令牌标记图像内容。最终,该团队构建了一个包含200万数据对、涵盖目标检测、动作生成、多模态对齐等10多个任务的3D具身指令数据集。如此规模和质量的数据集,为3D-VLA的训练和评估提供了坚实基础。

在这里插入图片描述

▍交互令牌和扩散模型的引入

传统的VLM主要通过文本和图像特征的交叉注意力实现多模态对齐。为了更好地建模3D环境,3D-VLA在其语言编码器中引入了一系列特殊的交互令牌。例如,用、标记输入的三维场景,用、突出关注的物体,以及用[action]、[/action]标识执行的动作等。这些可解释的令牌使得模型能够灵活地关联3D环境要素,动态地调整注意力机制。此外,为了赋予世界模型目标导向的想象能力,研究者将DDPM、Stable Diffusion等扩散模型的生成范式引入其中。通过在大规模3D数据上预训练从RGB-D到RGB-D、从点云到点云的扩散模型,并学习语言-视觉-动作三者的联合分布,3D-VLA能根据输入的文本指令和环境表征,直接采样生成可感知的未来状态。在推理阶段,该模型还设计了一个对齐器模块,用于在隐空间中动态地对齐扩散解码器和语言编码器的输出。这使得模型能灵活地插入不同形式的subgoal,并自适应地调整输出模态。

在这里插入图片描述

▍实验结果

在模型训练和评估中,研究者在3D-VLA和多个SOTA的VLA基线模型上进行了广泛的实验。一方面,在传统的具身问答、视觉定位、指令生成等理解型任务上,3D-VLA的各项指标都大幅领先于BLIP2、OpenFlamingo等视觉语言模型。以视觉问答为例,3D-VLA在对话式VQA和视觉推理VQA上的TOP-1准确率分别达到了65.8%和59.3%,相比BLIP2提升了4.5%和6.2%。这表明融入三维表征和空间推理能力,能显著提升模型对场景的语义理解。在指令生成任务中,3D-VLA生成的任务描述在流畅性、信息完整性等人工评估维度上也全面超越基线方法。

在这里插入图片描述

另一方面,研究者还设计了一系列新颖的生成型任务来考察3D-VLA的规划和想象能力。在目标深度图生成中,该模型根据输入RGB图像和目标文本,重构出了形状、位置、视角基本正确的深度表征。在机器人动作规划任务中,3D-VLA先根据指令预测3D目标场景,并用此作为subgoal进行路径搜索和运动规划,最终生成可执行的低层控制指令。在三个具身交互数据集上的测试显示,该模型完成任务的成功率达到85%以上,大幅超过了传统的VLA规划算法。

在这里插入图片描述

这些实验结果充分证明了3D-VLA在感知、推理、规划等认知能力上的优势。通过从大规模3D-语言-动作数据中学习物理和语义知识,并将其编码为通用的世界模型,该框架能够在多个应用场景中实现较好的任务迁移和零样本泛化能力。

在这里插入图片描述

▍结语与展望

3D-VLA的提出标志着VLA模型向三维世界迈进了关键一步。通过将视觉-语言大模型与3D表征、扩散生成等前沿技术相结合,该框架初步实现了从3D感知到规划的端到端建模。一方面,模型能理解和推理三维场景,回答空间指令;另一方面,它还能想象目标状态,并用生成的subgoal来指导行动序列的规划。这种高度整合的世界模型极大拓展了VLA的应用边界,为构建更智能、更鲁棒的具身智能体铺平了道路。

当然,3D-VLA仍有不少改进空间。首先,如何在保证语义对齐的前提下,进一步提升3D感知和生成的效果,是一个值得研究的问题。其次,在实际机器人系统中,模型输出的离散动作令牌需要解码为连续控制,这需要与运动规划等模块进行更紧密的适配。此外,3D-VLA还需要在更大规模、更多样化的数据集上进行训练,以增强知识的丰富性和鲁棒性。

展望未来,3D-VLA有望在更多垂直领域得到应用和创新。在家庭服务机器人中,该模型可作为高层控制器,感知、推理家居环境,并规划执行日常家务。在工业无人机巡检等任务中,3D-VLA可根据用户指令,自主地对关键部件进行定位、检测和分析。在虚拟助理和元宇宙场景中,具备三维世界模型的对话代理将能提供更自然、更具情境感知力的交互体验。总的来说,3D-VLA代表了VLA模型发展的新方向,虽然尚处于起步阶段,但其在机器人、智能助理、虚拟现实等领域已初现广阔的应用前景。相信随着技术的不断进步,这一赋予机器以三维想象力的框架,将为人机协作开辟更多可能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1572387.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

商业开源MES+源码+可拖拽式数据大屏

商业开源的一套超有价值的JAVA制造执行MES系统源码 带本地部署搭建教程 教你如何在本地运行运行起来。 开发环境:jdk11tomcatmysql8springbootmaven 需要源码,私信我付费获取。 一、系统概述: 万界星空科技免费试用MES、开源MES、商业开…

SAR教程系列7——在cadence中用Spectrum工具FFT仿真ADC的ENOB、SNR等动态性能指标

首先在仿真之前,你得有一个ADC。然后是思考如何仿真的问题,如何加激励,如何使用相关工具查看仿真结果。假定你有一个可以仿真的ADC,大致经过下列步骤可以得到ADC的相关动态性能指标。 第一步:在ADC后面接一个理想的DA…

docker命令:查看镜像、查看正在运行的容器、终止某个正在运行的容器

2024年4月6日,周五下午 查看docker镜像(image)有哪些 docker image ls 查看正在运行的容器(container)有哪些 docker ps 终止正在运行的container docker stop 容器ID 用docker ps可以查到正在运行的容器的ID

如何从数码相机恢复已删除的照片?

“嗨,我删除了索尼数码相机中的所有照片。有什么办法可以让他们回来吗?” ——刘凯 我们经常从数码相机中删除照片。但是,如果我们误删除了一些重要的照片,则很难将其恢复,因为删除的照片可能会绕过回收站或垃圾箱&am…

docker + miniconda + python 环境安装与迁移(详细版)

本文主要列出从安装dockerpython环境到迁移环境的整体步骤。windows与linux之间进行测试。 简化版可以参考:docker miniconda python 环境安装与迁移(简化版)-CSDN博客 目录 一、docker 安装和测试 二、docker中拉取miniconda&#xff…

sfml sdl2 windows vscode 调试和coderunner插件运行

链接库写在编译链接命令里,如果没有使用到不会加入到生成的可执行文件里。所以tasks.json可以这样写, {"version": "2.0.0","tasks": [{"type": "cppbuild","label": "C/C: g.exe 生…

VGA显示器驱动设计与验证

1.原理 场同步信号的单位是像素点 场同步信号的单位是一行 60的含义是每秒钟刷新60帧图像 全0表示黑色 2.1 CLK_gen.v module CLK_gen(input wire sys_clk ,input wire sys_rst_n ,output wire CLK_out ,output wire locked );parameter STATE1b0; reg [1:0] cnt; r…

Transformer位置编码详解

在处理自然语言时候,因Transformer是基于注意力机制,不像RNN有词位置顺序信息,故需要加入词的位置信息来显示的表明词的上下文关系。具体是将词经过位置编码(positional encoding),然后与emb词向量求和,作为编码块(Enc…

程序·人生

诡异之极 2024.03.12 清新环境(股票代码002573)委托卖出 20000股,委托价4.58,当日最高价4.57 2024.03.11 清新环境(股票代码002573)委托卖出 20000股,委托价4.55,当日最高价4.54 …

谷歌(Google)历年编程真题——数组和字符串(螺旋矩阵)

Google 希望了解你的编码技能和专业技术知识,包括工具、编程语言,以及关于数据结构和算法等主题的一般知识。讨论过程中通常会反复提到相关的话题,就像在工作中的讨论那样,从而推动彼此思考并学习不同的方法。无论你的工作经验如何…

Whisper报错:ffmpeg返回异常值1

本地使用cmd命令显示ffmpeg可以用,但是使用python代码调用whisper包就报错。 查看了whisper源码,发现其也是调用的cmd来使用ffmpeg,于是修改其audio.py中的audio方法中ffmpeg的具体位置完美运行。

基于单片机电阻炉模糊算法控制性系统设计

**单片机设计介绍,基于单片机电阻炉模糊算法控制性系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机电阻炉模糊算法控制性系统的设计概要主要包括硬件设计、软件设计以及模糊控制算法的应用。以下是…

【Spring进阶系列丨第七篇】Spring框架新注解分类及详解

文章目录 一、Spring新注解1.1、Configuration注解1.1.1、定义一个类1.1.2、使用Configuration注解修饰类1.1.3、作用 1.2、Bean注解1.2.1、定义bean1.2.2、在主配置类中注册bean1.2.3、测试容器中是否有该bean1.2.4、注册bean的同时可以指定bean名称1.2.5、补充内容1.2.5.1、案…

计算机接口(部分实验)

;实验三: ;*******************************; ;* 8255方式0的C口输入,A口输出 *; ;*******************************; io8255a equ 288h io8255c equ 28ah io8255 equ 28bhcode segmentassume cs:code start: mov dx, 28bH ;设8255为…

Vue3 项目实例(二)vite.config.ts的配置与axios安装

一、vite.config.ts的配置 1、对相对路径的处理() import { defineConfig } from vite import vue from vitejs/plugin-vue // vite 提供node核心对象path import path from path // https://vitejs.dev/config/ export default defineConfig({plugins…

FPGA高端项目:解码索尼IMX327 MIPI相机+2路视频融合叠加,提供开发板+工程源码+技术支持

目录 1、前言2、相关方案推荐本博主所有FPGA工程项目-->汇总目录我这里已有的 MIPI 编解码方案 3、本 MIPI CSI-RX IP 介绍4、个人 FPGA高端图像处理开发板简介5、详细设计方案设计原理框图IMX327 及其配置MIPI CSI RX图像 ISP 处理HLS多路视频融合叠加图像缓存HDMI输出工程…

数字化赋能乡村:开启乡村发展新纪元

随着信息技术的迅猛发展和数字化浪潮的席卷,乡村发展正迎来前所未有的机遇与挑战。数字化赋能乡村,不仅是推动农业现代化、提升农村治理水平的必由之路,更是开启乡村发展新纪元的关键所在。本文将围绕数字化赋能乡村这一主题,探讨…

【React】React知识要点记录

描述UI 万物皆组件 为什么多个 JSX 标签需要被一个父元素包裹? 切勿将数字放在 && 左侧 React 中为什么需要 key? React 为何侧重于纯函数? 渲染树 模块依赖树 添加交互 React如何传递事件处理函数? React 如何知道返回哪个 sta…

带你了解自动驾驶中的功能安全

谈一谈自动驾驶中的功能安全 附赠自动驾驶学习资料和量产经验:链接 一 概述 汽车涉及到人的生命财产安全,谈汽车首先要谈的就是安全。目前自动驾驶的安全主要分为三大块:功能安全,网络(信息)安全&#xf…

阿里云8核32G云服务器租用优惠价格表,包括腾讯云和京东云

8核32G云服务器租用优惠价格表,云服务器吧yunfuwuqiba.com整理阿里云8核32G服务器、腾讯云8核32G和京东云8C32G云主机配置报价,腾讯云和京东云是轻量应用服务器,阿里云是云服务器ECS: 阿里云8核32G服务器 阿里云8核32G服务器价格…