Redis各个方面入门详解

news2025/1/20 16:59:05

目录

一、Redis介绍

二、分布式缓存常见的技术选型方案

三、Redis 和 Memcached 的区别和共同点

四、缓存数据的处理流程

五、Redis作为缓存的好处

六、Redis 常见数据结构以及使用场景

七、Redis单线程模型

八、Redis 给缓存数据设置过期时间

九、Redis判断数据过期的原理

十、过期的数据的删除策略

十一、Redis 内存淘汰机制

十二、Redis 持久化机制

        RDB

        优点:

        缺点:

        AOF

        优点:

        缺点:

        RDB和AOF的对比

十三、事务


一、Redis介绍

        简单来说 Redis 就是一个使用 C 语言开发的数据库,不过与传统数据库不同的是 Redis 的数据是存在内存中的 ,也就是它是内存数据库,所以读写速度非常快,因此 Redis 被广泛应用于缓存方向。

        另外,Redis 除了做缓存之外,Redis 也经常用来做分布式锁,甚至是消息队列。

        Redis 提供了多种数据类型来支持不同的业务场景。Redis 还支持事务 、持久化、Lua 脚本、多种集群方案。

二、分布式缓存常见的技术选型方案

        分布式缓存的话,使用的比较多的主要是 Memcached 和 Redis。不过,现在基本没有看过还有项目使用 Memcached 来做缓存,都是直接用 Redis。

        Memcached 是分布式缓存最开始兴起的那会,比较常用的。后来,随着 Redis 的发展,大家慢慢都转而使用更加强大的 Redis 了。

        分布式缓存主要解决的是单机缓存的容量受服务器限制并且无法保存通用的信息。因为,本地缓存只在当前服务里有效,比如如果你部署了两个相同的服务,他们两者之间的缓存数据是无法共同的。

三、Redis 和 Memcached 的区别和共同点

        现在公司一般都是用 Redis 来实现缓存,而且 Redis 自身也越来越强大了!不过,了解 Redis 和 Memcached 的区别和共同点,有助于我们在做相应的技术选型的时候,能够做到有理有据!

共同点 :

  1. 都是基于内存的数据库,一般都用来当做缓存使用。
  2. 都有过期策略。
  3. 两者的性能都非常高。

区别 :

  1. Redis 支持更丰富的数据类型(支持更复杂的应用场景)。Redis 不仅仅支持简单的 k/v 类型的数据,同时还提供 list,set,zset,hash 等数据结构的存储。Memcached 只支持最简单的 k/v 数据类型。
  2. Redis 支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用,而 Memecache 把数据全部存在内存之中。
  3. Redis 有灾难恢复机制。因为可以把缓存中的数据持久化到磁盘上。
  4. Redis 在服务器内存使用完之后,可以将不用的数据放到磁盘上。但是,Memcached 在服务器内存使用完之后,就会直接报异常。
  5. Memcached 没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据;但是 Redis 目前是原生支持 cluster 模式的.
  6. Memcached 是多线程,非阻塞 IO 复用的网络模型;Redis 使用单线程的多路 IO 复用模型。(Redis 6.0 引入了多线程 IO )
  7. Redis 支持发布订阅模型、Lua 脚本、事务等功能,而 Memcached 不支持。并且,Redis 支持更多的编程语言。
  8. Memcached过期数据的删除策略只用了惰性删除,而 Redis 同时使用了惰性删除与定期删除。

        相信看了上面的对比之后,我们已经没有什么理由可以选择使用 Memcached 来作为自己项目的分布式缓存了。

四、缓存数据的处理流程

简单来说就是:

  1. 如果用户请求的数据在缓存中就直接返回。
  2. 缓存中不存在的话就看数据库中是否存在。
  3. 数据库中存在的话就更新缓存中的数据。
  4. 数据库中不存在的话就返回空数据。

五、Redis作为缓存的好处

        简单,来说使用缓存主要是为了提升用户体验以及应对更多的用户。

        下面我们主要从“高性能”和“高并发”这两点来看待这个问题。

        高性能 :

        对照上面 👆 我画的图。我们设想这样的场景:

        假如用户第一次访问数据库中的某些数据的话,这个过程是比较慢,毕竟是从硬盘中读取的。但是,如果说,用户访问的数据属于高频数据并且不会经常改变的话,那么我们就可以很放心地将该用户访问的数据存在缓存中。

        这样有什么好处呢? 那就是保证用户下一次再访问这些数据的时候就可以直接从缓存中获取了。操作缓存就是直接操作内存,所以速度相当快。

        不过,要保持数据库和缓存中的数据的一致性。 如果数据库中的对应数据改变的之后,同步改变缓存中相应的数据即可!

        高并发:

        一般像 MySQL 这类的数据库的 QPS 大概都在 1w 左右(4 核 8g) ,但是使用 Redis 缓存之后很容易达到 10w+,甚至最高能达到 30w+(就单机 redis 的情况,redis 集群的话会更高)。

        QPS(Query Per Second):服务器每秒可以执行的查询次数;

        所以,直接操作缓存能够承受的数据库请求数量是远远大于直接访问数据库的,所以我们可以考虑把数据库中的部分数据转移到缓存中去,这样用户的一部分请求会直接到缓存这里而不用经过数据库。进而,我们也就提高的系统整体的并发。

六、Redis 常见数据结构以及使用场景

        关于Redis的常用命令,可以移步本人的另一篇博客:Redis入门

七、Redis单线程模型

        Redis是基于reactor模型来设计开发自己的一套高效的时间处理模型,这套事件处理模型对应的是 Redis 中的文件事件处理器(file event handler)。由于文件事件处理器(file event handler)是单线程方式运行的,所以我们一般都说 Redis 是单线程模型。

        既然是单线程,那怎么监听大量的客户端连接呢?

        Redis 通过IO 多路复用程序 来监听来自客户端的大量连接(或者说是监听多个 socket),它会将感兴趣的事件及类型(读、写)注册到内核中并监听每个事件是否发生。

        这样的好处非常明显: I/O 多路复用技术的使用让 Redis 不需要额外创建多余的线程来监听客户端的大量连接,降低了资源的消耗(和 NIO 中的 Selector 组件很像)。

八、Redis 给缓存数据设置过期时间

        一般情况下,我们设置保存的缓存数据的时候都会设置一个过期时间。为什么呢?

        因为内存是有限的,如果缓存中的所有数据都是一直保存的话,分分钟直接Out of memory。

Redis 自带了给缓存数据设置过期时间的功能,比如

127.0.0.1:6379> expire key  60 # 数据在 60s 后过期
(integer) 1
127.0.0.1:6379> setex key 60 value # 数据在 60s 后过期 (setex:[set] + [ex]pire)
OK
127.0.0.1:6379> ttl key # 查看数据还有多久过期
(integer) 56

        注意:Redis中除了字符串类型有自己独有设置过期时间的命令 setex 外,其他方法都需要依靠 expire 命令来设置过期时间 。另外, persist 命令可以移除一个键的过期时间:

        过期时间除了有助于缓解内存的消耗,还有什么其他用么?

        很多时候,我们的业务场景就是需要某个数据只在某一时间段内存在,比如我们的短信验证码可能只在1分钟内有效,用户登录的 token 可能只在 1 天内有效。

        如果使用传统的数据库来处理的话,一般都是自己判断过期,这样更麻烦并且性能要差很多。

九、Redis判断数据过期的原理

        Redis 通过一个叫做过期字典(可以看作是hash表)来保存数据过期的时间。过期字典的键指向Redis数据库中的某个key(键),过期字典的值是一个long long类型的整数,这个整数保存了key所指向的数据库键的过期时间(毫秒精度的UNIX时间戳)。

        过期字典是存储在redisDb这个结构里的:

typedef struct redisDb {
    ...
    
    dict *dict;     //数据库键空间,保存着数据库中所有键值对
    dict *expires   // 过期字典,保存着键的过期时间
    ...
} redisDb;

十、过期的数据的删除策略

        如果假设你设置了一批 key 只能存活 1 分钟,那么 1 分钟后,Redis 是怎么对这批 key 进行删除的呢?

        常用的过期数据的删除策略就两个(重要!自己造缓存轮子的时候需要格外考虑的东西):

  1. 惰性删除 :只会在取出key的时候才对数据进行过期检查。这样对CPU最友好,但是可能会造成太多过期 key 没有被删除。
  2. 定期删除 : 每隔一段时间抽取一批 key 执行删除过期key操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对CPU时间的影响。

        定期删除对内存更加友好,惰性删除对CPU更加友好。两者各有千秋,所以Redis 采用的是 定期删除+惰性/懒汉式删除 。

        但是,仅仅通过给 key 设置过期时间还是有问题的。因为还是可能存在定期删除和惰性删除漏掉了很多过期 key 的情况。这样就导致大量过期 key 堆积在内存里,然后就Out of memory了。

        怎么解决这个问题呢?答案就是: Redis 内存淘汰机制。

十一、Redis 内存淘汰机制

Redis 提供 6 种数据淘汰策略:

  1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
  2. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
  3. volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
  4. allkeys-lru(least recently used):当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)
  5. allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
  6. no-eviction:禁止驱逐数据,也就是说当内存不足以容纳新写入数据时,新写入操作会报错。这个应该没人使用吧!

4.0 版本后增加以下两种:

  1. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰
  2. allkeys-lfu(least frequently used):当内存不足以容纳新写入数据时,在键空间中,移除最不经常使用的 key

十二、Redis 持久化机制

        Redis持久化就是把内存的数据写到磁盘中去,防止服务宕机了内存数据丢失;

        Redis提供两种持久化机制RDB(默认)和AOF机制;

        RDB

        RDB(Redis DataBase缩写快照)是Redis默认的持久化方式。按照一定的时间将内存的数据以快照的形式保存到硬盘中,对应产生的数据文件为dump.rdb。通过配置文件中的save参数来定义快照的周期;记录Redis数据库的所有键值对,在某个时间点将数据写入一个临时文件持久化结束后,用这个临时文件替换上次持久化的文件达到数据恢复;

        优点:

        只有一个文件 dump.rdb,方便持久化;

        容灾性好,一个文件可以保存到安全的磁盘;

        性能最大化,fork子进程来完成写操作,让主进程继续处理命令,所以是IO最大化。使用单独子进程来进行持久化,主进程不会进行任何 IO 操作,保证了Redis的高性能;

        相对于数据集大时,比 AOF 的启动效率更高;

        缺点:

        数据安全性低;

        RDB 是间隔一段时间进行持久化,如果在持久化时Redis发生故障,会发生数据丢失。所以这种方式更适合数据要求不严谨的时候;

save 900 1           #在900秒(15分钟)之后,如果至少有1个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
save 300 10          #在300秒(5分钟)之后,如果至少有10个key发生变化,Redis就会自动触发BGSAVE命令创建快照。
save 60 10000        #在60秒(1分钟)之后,如果至少有10000个key发生变化,Redis就会自动触发BGSAVE命令创建快照。

        创建快照的办法有如下几种:

  • BGSAVE命令:

        客户端向Redis发送 BGSAVE命令 来创建一个快照。对于支持BGSAVE命令的平台来说(基本上所有平台支持,除了Windows平台),Redis会调用fork来创建一个子进程,然后子进程负责将快照写入硬盘,而父进程则继续处理命令请求。

  • SAVE命令:

        客户端还可以向Redis发送 SAVE命令 来创建一个快照,接到SAVE命令的Redis服务器在快照创建完毕之前不会再响应任何其他命令。SAVE命令不常用,我们通常只会在没有足够内存去执行BGSAVE命令的情况下,又或者即使等待持久化操作执行完毕也无所谓的情况下,才会使用这个命令。

  • save选项:

        如果用户设置了save选项(一般会默认设置),比如 save 60 10000,那么从Redis最近一次创建快照之后开始算起,当“60秒之内有10000次写入”这个条件被满足时,Redis就会自动触发BGSAVE命令。

  • SHUTDOWN命令:

        当Redis通过SHUTDOWN命令接收到关闭服务器的请求时,或者接收到标准TERM信号时,会执行一个SAVE命令,阻塞所有客户端,不再执行客户端发送的任何命令,并在SAVE命令执行完毕之后关闭服务器。

  • 一个Redis服务器连接到另一个Redis服务器:

        当一个Redis服务器连接到另一个Redis服务器,并向对方发送SYNC命令来开始一次复制操作的时候,如果主服务器目前没有执行BGSAVE操作,或者主服务器并非刚刚执行完BGSAVE操作,那么主服务器就会执行BGSAVE命令

        如果系统真的发生崩溃,用户将丢失最近一次生成快照之后更改的所有数据。因此,快照持久化只适用于即使丢失一部分数据也不会造成一些大问题的应用程序。不能接受这个缺点的话,可以考虑AOF持久化。

        AOF

        AOF持久化(即Append Only File持久化),是将Redis执行的每次写命令记录到单独的日志文件中,当重启Redis会重新将持久化的日志中文件恢复数据。当两种方式同时开启时数据恢复Redis会优先选择AOF恢复;

        优点:

        数据安全,AOF持久化可以配置 appendfsync 属性,有always属性,每进行一次命令操作就记录到AOF文件中一次;

        通过append模式写文件,即使中途服务器宕机,可以通过 redis-check-aof 工具解决数据一致性问题;

        AOF机制的rewrite模式。AOF文件没被 rewrite 之前(文件过大时会对命令 进行合并重写),可以删除其中的某些命令(比如误操作的 flushall);

        缺点:

        AOF文件比RDB文件大,且恢复速度慢;

        数据集大的时候,比RDB启动效率低;

appendfsync always    #每次有数据修改发生时都会写入AOF文件,这样会严重降低Redis的速度
appendfsync everysec  #每秒钟同步一次,显示地将多个写命令同步到硬盘
appendfsync no        #让操作系统决定何时进行同步

        RDB和AOF的对比

                AOF文件比RDB更新频率高,优先使用AOF还原数据;

                AOF比RDB更安全也更大;

                RDB性能比AOF好;

                如果两个都配了优先加载AOF;

十三、事务

        Redis事务是指将多条命令加入队列,一次批量执行多条命令,每条命令会按顺序执行,事务执行过程中不会受客户端传入的命令请求影响。

        Redis事务和关系型数据库的事务不太一样,它不保证原子性,也没有隔离级别的概念。

        Redis事务没有隔离级别的概念

        批量操作在发送 EXEC 命令前被放入队列缓存,并不会被实际执行,也就不存在事务内的查询要看到事务里的更新,事务外查询不能看到。

        Redis不保证原子性

        Redis中,单条命令是原子性执行的,但事务不保证原子性,且没有回滚。事务中任意命令执行失败,其余的命令仍会被执行。

        一个事务从开始到执行会经历以下三个阶段:

                第一阶段:开始事务

                第二阶段:命令入队

                第三阶段、执行事务

        Redis事务的相关命令如下:

                MULTI:标识一个事务的开启,即开启事务;

                EXEC:执行事务中的所有命令,即提交;

                DISCARD:放弃事务;和回滚不一样,Redis事务不支持回滚。

                WATCH:监视Key改变,用于实现乐观锁。如果监视的Key的值改变,事务最终会执行失败。

                UNWATCH:放弃监视。

        Redis事务优缺点

                优点:

                一次性按顺序执行多个Redis命令,不受其他客户端命令请求影响;

                 事务中的命令要么都执行(命令间执行失败互相不影响),要么都不执行(比如中间有命令语法错误);

                缺点:

                        事务执行时,不能保证原子性;

                        命令入队每次都需要和服务器进行交互,增加带宽;

        注意

        当事务中命令语法使用错误时,最终会导致事务执行不成功,即事务内所有命令都不执行;

        当事务中命令知识逻辑错误,就比如给字符串做加减乘除操作时,只能在执行过程中发现错误,这种事务执行中失败的命令不影响其他命令的执行。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1571744.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

isc-dhcp-server DNS配置

我遇到一个有趣的问题,我先在一台Ubuntu服务器上使用isc-dhcp-server在其其中一个网口运行DHCP服务,然后我自己的笔记本电脑直连到这个网口,来上网。 本来直接就应该能上网,但是我的电脑只有在打开Clash时才能访问互联网&#xf…

基于多模态单细胞数据构建共表达网络-MuSeGNN

本篇来自于MuSe-GNN: Learning Unified Gene Representation From Multimodal Biological Graph Data的补充材料。主要目的是从多模态数据中构建共表达网络。作者概述了使用CS-CORE,scTransform和SPARK-X进行预处理步骤和网络构建的算法细节。 目前存在大量用于图谱…

卫星遥感影像统计农业产量、作物分类及面积

卫星遥感技术的广泛应用为农业领域带来了巨大的变革,其中,卫星遥感影像在农业产量估算方面的应用正成为一项关键技术。通过高分辨率的遥感数据,农业生产者可以更准确、及时地了解农田状况,实现精准农业管理,提高产量和…

软件杯 深度学习乳腺癌分类

文章目录 1 前言2 前言3 数据集3.1 良性样本3.2 病变样本 4 开发环境5 代码实现5.1 实现流程5.2 部分代码实现5.2.1 导入库5.2.2 图像加载5.2.3 标记5.2.4 分组5.2.5 构建模型训练 6 分析指标6.1 精度,召回率和F1度量6.2 混淆矩阵 7 结果和结论8 最后 1 前言 &…

TiDB单机版安装和连接访问

TiDB单机版安装和连接访问 1、下载 $wget http://download.pingcap.org/tidb-latest-linux-amd64.tar.gz 2、解压缩 $tar -zxvf tidb-latest-linux-amd64.tar.gz 3、启动TiDB 启动PD $./bin/pd-server --data-dirpd --log-filepd.log 启动tikv $./bin/tikv-server --pd…

路由器拨号失败解决方法

目录 一、遇到问题 二、测试 三、解决方法 (一)路由器先单插wan口设置 (二)mac地址替换 (三)更改路由器DNS 一、遇到问题 1 .在光猫使用桥接模式,由路由器进行拨号的时候,出现…

关于 QSound播放wav音频文件,播放失败“using null output device, none available” 的解决方法

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/137264493 红胖子(红模仿)的博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软…

【C语言】_文件内容操作:随机读写

目录 1. fseek 1.1 随机读文件 1.2 随机写文件 2. ftell 3. rewind 当以读方式打开一个存在且存有内容的文件时,文件指针会默认指向第一个元素。以在test4.txt文件中存储abcdef为例: int main() {//打开文件FILE* pf fopen("E:\\C_文件操作…

AI复活:商业新风口还是情感禁区?

随着人工智能技术的飞速发展,AI已经渗透到我们生活的方方面面,其中,“AI复活”服务作为新兴的技术应用,正逐渐走进大众视野。然而,这一技术带来的不仅是商业机会,更伴随着伦理和情感的争议。 “AI复活”服务…

NoSQL概述

NoSQL概述 目录 一、为什么用NoSQL 二、什么是NoSQL 三、经典应用分析 四、N o S Q L 数 据 模 型 简 介 五、NoSQL四大分类 六、CAP BASE 一、为什么用NoSQL 1、单机MySQL的美好年代 在90年代,一个网站的访问量一般不大,用单个数据库完全可以轻松应…

webrtcP2P通话流程

文章目录 webrtcP2P通话流程webrtc多对多 mesh方案webrtc多对多 mcu方案webrtc多对多 sfu方案webrtc案例测试getUserMediagetUserMedia基础示例-打开摄像头getUserMedia canvas - 截图 打开共享屏幕 webrtcP2P通话流程 在这里,stun服务器包括stun服务和turn转发服…

比nestjs更优雅的ts控制反转策略-依赖查找

一、Cabloy5.0内测预告 Cabloy5.0采用TS对整个全栈框架进行了脱胎换骨般的大重构,并且提供了更加优雅的ts控制反转策略,让我们的业务开发更加快捷顺畅 1. 新旧技术栈对比: 后端前端旧版js、egg2.0、mysqljs、vue2、framework7新版ts、egg3…

MSF永恒之蓝漏洞利用详解[漏洞验证利用及后渗透]【详细版】

漏洞原因 永恒之蓝利用了SMBv1的一个缺陷。SMB(Server Message Block)是一种在Windows环境中广泛使用的网络文件共享协议。这个漏洞允许未经授权的攻击者通过网络发送特制的数据包到目标系统,从而远程执行恶意代码 openvas漏洞扫描结果 使用…

03-自媒体文章发布

自媒体文章发布 1)自媒体前后端搭建 1.1)后台搭建 ①:资料中找到heima-leadnews-wemedia.zip解压 拷贝到heima-leadnews-service工程下,并指定子模块 执行leadnews-wemedia.sql脚本 添加对应的nacos配置 spring:datasource:driver-class-name: com…

Linux目录结构知识

一、认识Linux目录 1) Linux目录结构知识 1) win: 目录顶点是盘符 C/D/E 。所有的目录结构都在不同的盘符下面,不同的盘之间不能沟通的。 2) Linux: 目录顶点是 / ,称为根。所有的目录结构都在根下面,他的目录之间都…

不妨借一步说话,你想知道的关于设计模式的种种

可以点击关于我联系我获取完整PDF (VX:mm14525201314) 1. 请列举出在 JDK 中几个常用的设计模式? 单例模式(Singleton pattern)用于 Runtime,Calendar 和其他的一些类中。 工厂模式(Factory pattern&…

html5如何在使用原生开发的情况下实现组件化

我们知道如何在vue/react中使用组件化开发,那么如果只是一个简单的界面,一个HTML就搞定的事情,你还会去新建一个vue/react项目吗? 在使用原生HTML开发时,我们也会遇到一些常见的功能、模块,那么如何在原生…

java——文件上传

一、文件上传——简介 文件上传的简介:文件上传是指将本地计算机中的文件传输到网络上的服务器或另一台计算机上的过程。在 Web 开发中,文件上传通常指的是将用户通过 Web 页面提交的文件(如图像、文档、音频、视频等)传输到服务器…

Ps:预览调整 32 位 HDR 图像

由于 HDR 图像的动态范围超出了标准计算机显示器的显示范围。在 Photoshop 中打开 HDR 图像时,图像可能会非常暗或出现褪色现象。 Photoshop 提供了专门的预览调整功能,以使标准显示器显示的 HDR 图像的高光和阴影不会太暗或出现褪色现象。 预览调整设置…

最优算法100例之33-数据流的中位数

专栏主页:计算机专业基础知识总结(适用于期末复习考研刷题求职面试)系列文章https://blog.csdn.net/seeker1994/category_12585732.html 题目描述 中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。 例如, [2,3,4] 的中位数是 3 [2,3] 的中位…