代码随想录阅读笔记-二叉树【验证二叉搜索树】

news2025/1/17 3:40:39

题目

给定一个二叉树,判断其是否是一个有效的二叉搜索树。

假设一个二叉搜索树具有如下特征:

  • 节点的左子树只包含小于当前节点的数。
  • 节点的右子树只包含大于当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

98.验证二叉搜索树

思路 

要知道中序遍历下,输出的二叉搜索树节点的数值是有序序列。

有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。

递归法

可以递归中序遍历将二叉搜索树转变成一个数组,代码如下:

vector<int> vec;
void traversal(TreeNode* root) {
    if (root == NULL) return;
    traversal(root->left);
    vec.push_back(root->val); // 将二叉搜索树转换为有序数组
    traversal(root->right);
}

然后只要比较一下,这个数组是否是有序的,注意二叉搜索树中不能有重复元素

traversal(root);
for (int i = 1; i < vec.size(); i++) {
    // 注意要小于等于,搜索树里不能有相同元素
    if (vec[i] <= vec[i - 1]) return false;
}
return true;

整体代码如下:

class Solution {
private:
    vector<int> vec;
    void traversal(TreeNode* root) {
        if (root == NULL) return;
        traversal(root->left);
        vec.push_back(root->val); // 将二叉搜索树转换为有序数组
        traversal(root->right);
    }
public:
    bool isValidBST(TreeNode* root) {
        vec.clear(); // 不加这句在leetcode上也可以过,但最好加上
        traversal(root);
        for (int i = 1; i < vec.size(); i++) {
            // 注意要小于等于,搜索树里不能有相同元素
            if (vec[i] <= vec[i - 1]) return false;
        }
        return true;
    }
};

以上代码中,我们把二叉树转变为数组来判断,是最直观的,但其实不用转变成数组,可以在递归遍历的过程中直接判断是否有序。

这道题目比较容易陷入两个陷阱:

陷阱1

不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了

写出了类似这样的代码:

if (root->val > root->left->val && root->val < root->right->val) {
    return true;
} else {
    return false;
}

我们要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点。所以以上代码的判断逻辑是错误的。

例如: [10,5,15,null,null,6,20] 这个case:

二叉搜索树

节点10大于左节点5,小于右节点15,但右子树里出现了一个6 这就不符合了!

陷阱2

样例中最小节点 可能是int的最小值,如果这样使用最小的int来比较也是不行的。

此时可以初始化比较元素为longlong的最小值。

问题可以进一步演进:如果样例中根节点的val 可能是longlong的最小值 又要怎么办呢?文中会解答。

了解这些陷阱之后我们来看一下代码应该怎么写:

递归三部曲:

1、确定递归函数,返回值以及参数

要定义一个longlong的全局变量,用来比较遍历的节点是否有序,因为后台测试数据中有int最小值,所以定义为longlong的类型,初始化为longlong最小值。

注意递归函数要有bool类型的返回值, 路径总和题目中提到,只有寻找某一条边(或者一个节点)的时候,递归函数会有bool类型的返回值。

其实本题是同样的道理,我们在寻找一个不符合条件的节点,如果没有找到这个节点就遍历了整个树,如果找到不符合的节点了,立刻返回。

long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
bool isValidBST(TreeNode* root)

2、确定终止条件

如果是空节点 是不是二叉搜索树呢?是的,二叉搜索树也可以为空!

if (root == NULL) return true;

3、确定单层递归的逻辑

中序遍历,一直更新maxVal,一旦发现maxVal >= root->val,就返回false,注意元素相同时候也要返回false。

bool left = isValidBST(root->left);         // 左

// 中序遍历,验证遍历的元素是不是从小到大
if (maxVal < root->val) maxVal = root->val; // 中
else return false;

bool right = isValidBST(root->right);       // 右
return left && right;

整体代码如下:

class Solution {
public:
    long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
    bool isValidBST(TreeNode* root) {
        if (root == NULL) return true;

        bool left = isValidBST(root->left);
        // 中序遍历,验证遍历的元素是不是从小到大
        if (maxVal < root->val) maxVal = root->val;
        else return false;
        bool right = isValidBST(root->right);

        return left && right;
    }
};

以上代码是因为后台数据有int最小值测试用例,所以都把maxVal改成了longlong最小值。

如果测试数据中有 longlong的最小值,怎么办?

不可能在初始化一个更小的值了吧。 建议避免 初始化最小值,如下方法取到最左面节点的数值来比较。

代码如下:

class Solution {
public:
    TreeNode* pre = NULL; // 用来记录前一个节点
    bool isValidBST(TreeNode* root) {
        if (root == NULL) return true;
        bool left = isValidBST(root->left);

        if (pre != NULL && pre->val >= root->val) return false;
        pre = root; // 记录前一个节点

        bool right = isValidBST(root->right);
        return left && right;
    }
};

最后这份代码看上去整洁一些,思路也清晰。

迭代法

迭代法中序遍历稍加改动就可以了,代码如下:

class Solution {
public:
    bool isValidBST(TreeNode* root) {
        stack<TreeNode*> st;
        TreeNode* cur = root;
        TreeNode* pre = NULL; // 记录前一个节点
        while (cur != NULL || !st.empty()) {
            if (cur != NULL) {
                st.push(cur);
                cur = cur->left;                // 左
            } else {
                cur = st.top();                 // 中
                st.pop();
                if (pre != NULL && cur->val <= pre->val)
                return false;
                pre = cur; //保存前一个访问的结点

                cur = cur->right;               // 右
            }
        }
        return true;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1569308.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

金融中的数学知识

随机偏微分方程相比普通偏微分方程具有额外的随机项&#xff0c;反映了其描述的现象具有随机性质

认识 Redis 与 分布式

Redis 官网页面 Redis官网链接 Redis 的简介 Redis 是一个在内存中存储数据的中间件 一方面用于作为数据库&#xff0c;另一方面用于作为数据缓存&#xff0c;适用于分布式系统中 Redis 基于网络&#xff0c;进行进程间通信&#xff0c;把自己内存中的变量给别的进程&#xf…

Redis中的复制功能(五)

心跳检测 概述 在命令传播阶段&#xff0c;从服务器默认会以每秒一次的频率&#xff0c;向主服务器发送命令: REPLCONF ACK < replication_offset >其中replication_offset是从服务器当前的复制偏移量。 发送REPLCONF ACK命令对于主从服务器有三个作用: 1.检测主从服…

prompt 工程案例

目录 prompt 工程是什么&#xff1f; 案例 vllm 推理加速框架 prompt 工程是什么&#xff1f; prompt&#xff1a;提示词&#xff0c;也就是我们使用网页版输入给大模型的内容就叫 prompt&#xff0c;那什么是 prompt 工程呢&#xff1f; 简单理解其实就是利用编写的 prom…

Spark-Scala语言实战(12)

在之前的文章中&#xff0c;我们学习了如何在spark中使用键值对中的join,rightOuterJoin,leftOuterJoin三种方法。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢…

数据结构课堂考勤管理系统

摘要 高校的不断扩张让在校学生数量不断的增加&#xff0c;对于教师和管理人员的需求也在不断地增强&#xff0c;对日常的学生考勤管理的工作量也在日益增加&#xff0c;传统的人工点名签到的考勤管理模式已经给无法适用于当前高校考勤管理的需求&#xff0c;同时手动录入的考…

Spring重点知识(个人整理笔记)

目录 1. 为什么要使用 spring&#xff1f; 2. 解释一下什么是 Aop&#xff1f; 3. AOP有哪些实现方式&#xff1f; 4. Spring AOP的实现原理 5. JDK动态代理和CGLIB动态代理的区别&#xff1f; 6. 解释一下什么是 ioc&#xff1f; 7. spring 有哪些主要模块&#xff1f;…

使用c语言libexpat开源库解析XML数据

1 libexpat简介 Expat 是一个用 C 语言编写的开源 XML 解析库&#xff0c;以其高性能和小巧的体积著称。Expat 兼容多种操作系统平台&#xff0c;包括但不限于 Windows、Linux、macOS 等。由于其跨平台特性和简单易用的API&#xff0c;Expat 成为了许多C/C程序员解析XML文档的…

【项目实战】【Docker】【Git】【Linux】部署V2rayA项目

今天着手了一个全新领域的项目&#xff0c;从完全没有头绪到成功运行&#xff0c;记录一下具体的部署流程 github项目链接V2rayA 一开始拿到以后完全没有抓手&#xff0c;去阅读了一下他的帮助文档 写着能用docker运行&#xff0c;就去下载了一个Docker配置了一下 拉取代码到…

LeetCode-543. 二叉树的直径【树 深度优先搜索 二叉树】

LeetCode-543. 二叉树的直径【树 深度优先搜索 二叉树】 题目描述&#xff1a;解题思路一&#xff1a;DFS解题思路二&#xff1a;另一种写法DFS解题思路三&#xff1a;0 题目描述&#xff1a; 给你一棵二叉树的根节点&#xff0c;返回该树的 直径 。 二叉树的 直径 是指树中任…

【35分钟掌握金融风控策略3】场景概述3

目录 ​编辑 场景概述 贷前、贷中、贷后的划分及对应的风控场景 贷前风控场景简介 预授信 授信审批 定额 定价 人工审核 场景概述 贷前、贷中、贷后的划分及对应的风控场景 在金融风控全生命周期中&#xff0c;贷前主要是指授信成功及之前的阶段、贷中主要是指授信成…

ubuntu18.04图形界面卡死,鼠标键盘失灵, 通过MAC共享网络给Ubuntu解决!

ubuntu18.04图形界面卡死&#xff0c;鼠标键盘失灵&#xff0c; 通过MAC共享网络给Ubuntu解决&#xff01; 1. 尝试从卡死的图形界面切换到命令行界面2. 进入bios和grub页面3. 更改Grub中的设置&#xff0c;以进入命令行4. 在命令行页面解决图形界面卡死的问题5. Mac共享WI-FI网…

【QT+QGIS跨平台编译】056:【pdalcpp+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

点击查看专栏目录 文章目录 一、pdalcpp介绍二、pdal下载三、文件分析四、pro文件五、编译实践一、pdalcpp介绍 pdalcpp 是 PDAL(Point Data Abstraction Library)的 C++ 接口,它允许开发人员在他们的 C++ 项目中直接使用 PDAL 的功能和特性。PDAL 是一个开源的库,用于处理…

探索未来外贸电商系统的创新架构

在全球化、数字化的时代背景下&#xff0c;外贸电商行业呈现出蓬勃发展的态势。为了适应市场竞争的激烈和用户需求的多样化&#xff0c;外贸电商系统的架构设计显得尤为重要。本文将深入探讨未来外贸电商系统的创新架构&#xff0c;以期为行业发展提供新的思路和方向。 随着全…

IDEA2023.1.1中文插件

1.启动IDEA 选中Customize 2.选择All settings 3.选中Plugins,再搜索栏里输入Chinese,找到 "Chinese (Simplified) Language"插件&#xff0c;点击 Install 进行安装。 4. 安装完成后&#xff0c;重启IntelliJ IDEA&#xff0c;即可看到界面语言已经变为中文。

Java 开发者必备:JDK 版本详解与选择策略(含安装与验证)

1. JDK 版本 (Oracle Java SE 支持路线图) 数据来源&#xff1a;Oracle Java SE 支持路线图 | 甲骨文中国: https://www.oracle.com/cn/java/technologies/java-se-support-roadmap.html 版本GA DatePremier Support UntilExtended Support Until&#xff08;限 LTS&#xff09…

[C#]OpenCvSharp改变图像的对比度和亮度

目的 访问像素值mat.At<T>(y,x) 用0初始化矩阵Mat.Zeros 饱和操作SaturateCast.ToByte 亮度和对比度调整 g(x)αf(x)β 用α(>0)和β一般称作增益(gain)和偏置(bias)&#xff0c;分别控制对比度和亮度 把f(x)看成源图像像素&#xff0c;把g(x)看成输出图像像素…

如何利用待办事项清单提高工作效率?

你是否经常因为繁重的工作量而感到不堪重负&#xff1f;你是否在努力赶工期或经常忘记重要的电子邮件&#xff1f;你并不是特例。如何利用待办事项清单提高工作效率&#xff1f;这里有一个简单的方法可以帮你理清混乱并更高效地完成任务—待办事项清单。 这种类型的清单可以帮…

基于机器学习的木马检测模型的设计与实现(论文)_kaic

摘 要 科技的发展带来了人们生活的改变&#xff0c;近年来我国网民已突破十亿人口&#xff0c; 而且在后疫 情时代&#xff0c; 经历了疫情时期的一系列线上活动&#xff0c; 人们对网络的依赖比以往任何时期都要高 得多。高频次的上网行为也带来了一系列安全问题&#xff…

FPGA实现Canny算法(Verilog)

在边缘检测算法里面Sobel是比较简单的一个算法&#xff0c;但是其检测出来的边缘往往是比较粗的&#xff0c;效果不是很好&#xff0c;因为我们最理想的边缘肯定就是一个宽度为1的细线。 Canny算法在此基础上进行了改进&#xff0c;通过使用边缘的梯度信息进行非最大值抑制(NM…