算法学习——LeetCode力扣补充篇6(132. 分割回文串 II、673. 最长递增子序列的个数、841. 钥匙和房间、463. 岛屿的周长)

news2025/1/18 10:46:32

算法学习——LeetCode力扣补充篇6

在这里插入图片描述

132. 分割回文串 II

132. 分割回文串 II - 力扣(LeetCode)

描述

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是
回文串

返回符合要求的 最少分割次数 。

示例

示例 1:

输入:s = “aab”
输出:1
解释:只需一次分割就可将 s 分割成 [“aa”,“b”] 这样两个回文子串。

示例 2:

输入:s = “a”
输出:0

示例 3:

输入:s = “ab”
输出:1

提示

1 <= s.length <= 2000
s 仅由小写英文字母组成

代码解析

动态+递归(超时)
class Solution {
public:
    int result_num = INT_MAX;
    void trak_back(vector<vector<bool>> &dp , int indnx ,int result)
    {
       
        if(indnx == dp[0].size())
        {
            if(result_num > result) result_num = result;
            return;
        }
        for(int i=0 ; i<dp[0].size() ;i++)
        {
            if(dp[indnx][i] == true )
            {
                trak_back(dp,i+1,result+1);
            }
        }
    }
    int minCut(string s) {
        int result =0;
        vector<vector<bool>> dp(s.size() , vector<bool>(s.size(),false));
        for(int i=s.size()-1 ; i>=0 ;i--)
        {
            for(int j=i ; j<s.size() ;j++)
            {
                if(s[i]==s[j] && ( j-i<=1|| dp[i+1][j-1] == true )) dp[i][j] = true;
            }
        }
       
        trak_back(dp,0,result);
        return result_num-1;
    }
};
双DP
class Solution {
public:
    int minCut(string s) {
        vector<vector<bool>> dp(s.size() , vector<bool>(s.size(),false)); //dp[i][j]为i到j内是否是回文子串
        for(int i=s.size()-1 ; i>=0 ;i--)
        {
            for(int j=i ; j<s.size() ;j++)
            {
                if(s[i]==s[j] && ( j-i<=1|| dp[i+1][j-1] == true )) dp[i][j] = true;
            }
        }
       
       vector<int> dp2(s.size() , 0); //dp2[i] 为i内最少可以分为几段

       for(int i=0 ; i<s.size() ;i++) dp2[i] = i+1;//初始化,最差的情况,一个字符一段

       for(int i=0 ; i<s.size() ;i++) 
       {
            if(dp[0][i] == true)  //如果0到i是一段,则不看0到i内部,直接dp2[i] = 1;
            {
                dp2[i] = 1;
                continue;
            }
            for(int j=0 ; j<i ;j++) //判断j+1 到 i是否是一段,如果是 在dp2[i] 和 dp[j]+1选最小
                if(dp[j+1][i] == true) dp2[i] = min(dp2[i] , dp2[j] + 1 );
            
       }
        
        return dp2[s.size()-1] - 1;
    }
};

673. 最长递增子序列的个数

673. 最长递增子序列的个数 - 力扣(LeetCode)

描述

给定一个未排序的整数数组 nums , 返回最长递增子序列的个数 。

注意 这个数列必须是 严格 递增的。

示例

示例 1:

输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。

示例 2:

输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。

提示:

1 <= nums.length <= 2000
-106 <= nums[i] <= 106

代码解析

递归(超时)
class Solution {
public:
    int result = 0;
    vector<int> path;
    int max_path = 0;
    void track_back(vector<int>& nums , int indnx)
    {
        if(path.size() > max_path)
        {
            max_path = path.size();
            result = 1;
        }else if(path.size() == max_path) result++;

        if(indnx >= nums.size() ) return;

        for(int i = indnx ;i<nums.size();i++)
        {
            if( (path.size() == 0)||(path.size() !=0 && nums[i] > path[path.size()-1]) ) 
            {
                path.push_back(nums[i]);
                track_back(nums,i+1);
                path.pop_back();
            }
        }
        return;
    }
    int findNumberOfLIS(vector<int>& nums) {
        track_back(nums,0);
        return result;
    }
};
动态规划
class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        vector<int> dp(nums.size(),1);//i以内的最长子序列
        vector<int> count(nums.size(),1);//i以内最长子序列的个数
        int max_long = 1;
        for(int i=1 ; i<nums.size() ;i++)
        {
            for(int j=0 ; j<i ; j++)
            {
                if(nums[i] > nums[j] && dp[i] < dp[j] + 1) //发现更长的最长子序列
                {
                    count[i] = count[j]; 
                    dp[i] =  dp[j] + 1;
                }else if(nums[i] > nums[j] && dp[i] == dp[j] + 1) //发现和当前最长一样长的
                {
                    count[i] += count[j];
                    dp[i] = dp[i];
                }else if(nums[i] > nums[j] && dp[i] <= dp[j] + 1) //没发现最长的
                {
                    dp[i] = dp[i];
                }
                
                if(dp[i] > max_long) max_long = dp[i];
            }
        }

        int result = 0;
        for(int i=0 ; i<nums.size() ;i++)
            if(dp[i] == max_long) result += count[i];

        return result;
    }
};

841. 钥匙和房间

841. 钥匙和房间 - 力扣(LeetCode)

描述

有 n 个房间,房间按从 0 到 n - 1 编号。最初,除 0 号房间外的其余所有房间都被锁住。你的目标是进入所有的房间。然而,你不能在没有获得钥匙的时候进入锁住的房间。

当你进入一个房间,你可能会在里面找到一套不同的钥匙,每把钥匙上都有对应的房间号,即表示钥匙可以打开的房间。你可以拿上所有钥匙去解锁其他房间。

给你一个数组 rooms 其中 rooms[i] 是你进入 i 号房间可以获得的钥匙集合。如果能进入 所有 房间返回 true,否则返回 false。

示例

示例 1:

输入:rooms = [[1],[2],[3],[]]
输出:true
解释:
我们从 0 号房间开始,拿到钥匙 1。
之后我们去 1 号房间,拿到钥匙 2。
然后我们去 2 号房间,拿到钥匙 3。
最后我们去了 3 号房间。
由于我们能够进入每个房间,我们返回 true。

示例 2:

输入:rooms = [[1,3],[3,0,1],[2],[0]]
输出:false
解释:我们不能进入 2 号房间。

提示

n == rooms.length
2 <= n <= 1000
0 <= rooms[i].length <= 1000
1 <= sum(rooms[i].length) <= 3000
0 <= rooms[i][j] < n
所有 rooms[i] 的值 互不相同

代码解析

class Solution {
public:
    
    void track_back(vector<vector<int>> &rooms ,vector<int> &keys , int indnx)
    {
        if(keys[indnx] != 0 ) return;
        
        keys[indnx]++;
       
        for(int i=0 ; i<rooms[indnx].size() ; i++)
        {
            track_back(rooms,keys,rooms[indnx][i]);
        }
        return;
    }
    bool canVisitAllRooms(vector<vector<int>>& rooms) {
        vector<int> keys(rooms.size() ,0);

        track_back(rooms,keys,0);

        for(int i=0 ; i<keys.size() ;i++) 
            if(keys[i] == 0) return false;
        
        return true;
    }
};

463. 岛屿的周长

463. 岛屿的周长 - 力扣(LeetCode)

描述

给定一个 row x col 的二维网格地图 grid ,其中:grid[i][j] = 1 表示陆地, grid[i][j] = 0 表示水域。

网格中的格子 水平和垂直 方向相连(对角线方向不相连)。整个网格被水完全包围,但其中恰好有一个岛屿(或者说,一个或多个表示陆地的格子相连组成的岛屿)。

岛屿中没有“湖”(“湖” 指水域在岛屿内部且不和岛屿周围的水相连)。格子是边长为 1 的正方形。网格为长方形,且宽度和高度均不超过 100 。计算这个岛屿的周长。

示例

示例 1:

在这里插入图片描述

输入:grid = [[0,1,0,0],[1,1,1,0],[0,1,0,0],[1,1,0,0]]
输出:16
解释:它的周长是上面图片中的 16 个黄色的边

示例 2:

输入:grid = [[1]]
输出:4

示例 3:

输入:grid = [[1,0]]
输出:4

提示

row == grid.length
col == grid[i].length
1 <= row, col <= 100
grid[i][j] 为 0 或 1

代码解析

class Solution {
public:
    int result = 0;
    int m,n;
    int dir[4][2] = {0,-1,0,1,-1,0,1,0};
    void dfs(vector<vector<int>>& grid ,int x , int y)
    {
        for(int i=0 ; i<4 ;i++)
        {
            int next_x = x + dir[i][0];
            int next_y = y + dir[i][1];
            if(next_x<0||next_x>=m||next_y<0||next_y>=n) result++;
            else if(grid[next_x][next_y] == 0) result++;
        }
        return;
    }
    int islandPerimeter(vector<vector<int>>& grid) {
        m = grid.size();
        n = grid[0].size();

        for(int i=0 ; i<m ;i++)
        {
            for(int j=0 ; j<n ;j++)
            {
                if(grid[i][j] == 1)
                    dfs(grid,i,j);
            }
        }
        return result;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1569114.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一文了解低功耗蓝牙BLE

低功耗蓝牙技术可以构建两种类型的设备:双模设备和单模设备。双模设备既支持经典蓝牙又支持低功耗蓝牙。单模设备只支持低功耗蓝牙。还有仅支持经典蓝牙的设备。 在链路层,设备被分为广播者、扫描者、从设备和主设备。广播者是传输数据包的设备,扫描者是接收广播者的数据包…

ids工业相机与电控位移台同步控制及数据采集

通过VS2017和OpenCV,实现ids工业相机与电控位移台同步控制及数据采集 目录项目环境配置代码流程及思路项目架构项目开发运行效果开发关键ids相机配置位移台环境配置相机头文件相机参数设置保存图像函数设置电控位移台头文件电控位移台设置参数最后就是通过main函数进行调用和控…

美易官方:华尔街分析师最青睐的股票过去五年表现怎么样

华尔街分析师一直被视为金融市场的风向标&#xff0c;他们的推荐和预测往往能影响投资者的决策。然而&#xff0c;分析师的预测并不总是准确无误的&#xff0c;特别是在变幻莫测的股市中。那么&#xff0c;我们不禁要问&#xff0c;华尔街分析师最青睐的股票在过去五年中的表现…

OpenHarmony实战:小型系统移植概述

驱动主要包含两部分&#xff0c;平台驱动和器件驱动。平台驱动主要包括通常在SOC内的GPIO、I2C、SPI等&#xff1b;器件驱动则主要包含通常在SOC外的器件&#xff0c;如 LCD、TP、WLAN等 图1 OpenHarmony 驱动分类 HDF驱动被设计为可以跨OS使用的驱动程序&#xff0c;HDF驱动框…

单总线及DS18B20

目录 单总线 单总线介绍 单总线的电路规范 单总线时序结构 初始化 代码理解 发送一位 代码理解 接收一位 代码理解 发送一个字节 代码理解 接收一个字节 代码理解 DS18B20 DS18B20介绍 引脚及应用电路 内部结构 存储器结构 DS18B20操作流程 ROM指令 功能…

大厂面试之【Redis持久化机制】 - RDB和AOF概述及应用配置

文章目录 Redis持久化1. RDB(Redis DataBase)1.1 概述1.2 配置应用 2. AOF(Append Only File)2.1 概述2.2 配置应用 Redis持久化 先上结论&#xff1a;Redis持久化操作分为rdb以及aof&#xff0c;但是前者已经够用 1. RDB(Redis DataBase) 1.1 概述 rdb保存的是dump.rdb文件在指…

基于springboot实现校园资料分享平台系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现校园资料分享平台演示 摘要 随着信息互联网购物的飞速发展&#xff0c;国内放开了自媒体的政策&#xff0c;一般企业都开始开发属于自己内容分发平台的网站。本文介绍了校园资料分享平台的开发全过程。通过分析企业对于校园资料分享平台的需求&#xff0c;创…

C++ 11是如何封装Thread库的?

引言 C11 标准引入了一个重要的特性&#xff0c;即原生线程支持&#xff0c;这标志着C语言在并发编程领域迈出了坚实的步伐。在此之前&#xff0c;开发人员在进行跨平台的多线程编程时&#xff0c;不得不依赖于操作系统提供的特定API&#xff0c;如Windows API或POSIX Threads…

开发环境->生产环境

1、数据迁移 不涉及docker # 以数据库用户导出数据 mysqldump -h 192.168.1.168 -P 3307 -u abragent -pabragebb17 abragent > abragent.sql# 以root用户导出数据 mysqldump -h 192.168.1.168 -P 3307 -u root -p8d3Ba1b abragent > abragent.sql 涉及docker …

Android12 简单的共享内存驱动实现 参考Ashmem

Android12 共享内存驱动实现 SOC&#xff1a;RK3568 system&#xff1a;Android12 概述&#xff1a; 1. 概述 Ashmem&#xff08;Anonymous Shared Memory&#xff0c;Android 匿名共享内存&#xff09;&#xff0c;它基于 mmap 系统调用&#xff0c;可以让不同进程将同一段…

数据恢复工具哪个成功率高?十大数据恢复软件榜单

数据恢复软件可以恢复损坏或删除的数据。使用数据恢复软件恢复存储在安全位置的剩余信息。您可能会因意外删除文件、文件系统逻辑损坏甚至存储故障等各种原因而丢失数据。执行查看、复制、扫描、识别或提取存储设备中已删除扇区的数据等操作。恢复虚拟存储在任何设备&#xff0…

【算法练习】27:冒泡排序学习笔记

一、冒泡排序的算法思想 原理&#xff1a;以升序为例&#xff0c;冒泡排序通过从左往右连续比较相邻元素&#xff0c;当发现左边比右边大就交换元素。从左往右依次比较完称为“一轮”&#xff0c;每轮结束之后就会固定一个元素。 时间复杂度&#xff1a;2层循环&#xff0c;所以…

windows安装Openssl

openssl官网:[ Downloads ] - /source/index.html Windows 安装方法 OpenSSL 官网没有提供 Windows 版本的安装包&#xff0c;可以选择其他开源平台提供的工具 Win32/Win64 OpenSSL Installer for Windows - Shining Light Productions 等待下载完成 捐不起 配置环境变量 ope…

Maven依赖管理项目构建工具

一 Maven简介 1.1、Maven是一个依赖管理工具 1.1.1 jar 包的规模 随着我们使用越来越多的框架&#xff0c;或者框架封装程度越来越高&#xff0c;项目中使用的jar包也越来越多。项目中&#xff0c;一个模块里面用到上百个jar包是非常正常的。 比如下面的例子&#xff0c;我…

内存管理机制SLAB

1. 为什么需要内存分配管理&#xff1f;为什么需要SLAB&#xff1f; 在学习c语言时&#xff0c;我们常常会使用到malloc()去申请一块内存空间&#xff0c;用于存放我们的数据&#xff0c;这是代码层面的语言 如果我们想要关心malloc这个命令向系统发出后&#xff0c;系统会做什…

HTMLCSSJS

HTML基本结构 <html><head><title>标题</title></head><body>页面内容</body> </html> html是一棵DOM树, html是根标签, head和body是兄弟标签, body包括内容相关, head包含对内容的编写相关, title 与标题有关.类似html这种…

cdp集群扩容节点磁盘挂载失败原因和解决办法

问题说明 之前在对cdp集群扩容节点环境配置时 按照文档挂载磁盘 在最后一步挂载时&#xff0c;发现有块磁盘没挂载上去 可以看到本该挂载到/data5目录的磁盘sdf1被挂到了/data1上面 查看挂载点文件 vim /etc/fstab问题分析&#xff1a; 发现之前在设置挂载点的时候挂载目录…

gpt4.0中文版

我愿把这个网站成为全球最强AI网站&#xff01;弄100多个AI伺候你&#xff1f;&#xff1f; 家人们&#xff0c;你们猜我发现了什么牛逼的AI网站&#xff1f;&#xff1f; 直接上图&#xff1a; 编辑 这个网站&#xff0c;聚合了国内外100多个顶尖的AI&#xff0c;包括了Op…

AI技术在金融领域/银行业的应用和风险

前言 随着科技的不断发展&#xff0c;人工智能&#xff08;AI&#xff09;技术已经在各行各业得到了广泛的应用&#xff0c;其中包括银行业。银行业作为经济的重要组成部分&#xff0c;一直在不断地探索和应用新技术&#xff0c;以提升服务效率、风险管理和客户体验。然而&…

解决nvm切换node版本失败的终极办法,亲测有效!

问题 当我们有多个前端项目&#xff0c;但是使用的node版本不相同&#xff0c;这就需要我们在启动不同项目时切换node版本&#xff0c;很麻烦&#xff0c;这时有一个叫nvm的好东西可以帮我们快速切换node版本。 但是&#xff0c;nvm安装有一个巨大的坑点&#xff1a;nvm use …