C/C++程序的(编译,链接)翻译与运行

news2024/10/9 4:26:26

目录

前言:

1.程序环境

2.翻译环境

3.预处理(预编译)

4.编译

5.汇编

6.链接

7.运行环境

总结:


前言:

本篇来解释c/c++程序的翻译环境与运行环境中的过程,不同的编程语言的翻译环境类似,但是具体步骤可能有所差异,例如编译阶段,c/c++与java中的处理可能就不一样。

1.程序环境

在ANSI C的任何一种实现中,存在两种环境:

翻译环境:在这个环境中源代码被转换为了可执行的机器指令(二进制指令)。

执行环境:它用于实际执行代码。

2.翻译环境

 一个c语言项目可以由多个.c文件构成,那多个.c文件是怎么生成可执行程序的???

  •  多个.c文件单独经过编译器,编译处理生成了对应的目标文件(在windows下目标文件是.obj,在linux下目标文件为.o)。
  • 多个目标文件和链接库一起经过链接器的处理,最终生成了可执行程序。
  • 链接库是指运行时库(它是支持程序运行的基本函数集合)或者第三方库。

我们以linux下的gcc为例,将编译器处理拆分为3个过程:

3.预处理(预编译)

预处理(预编译)不同的书籍上叫法不一样,在gcc环境下对一个test.c文件进行预处理:

gcc -E test.c -o test.i

 

预处理阶段主要处理那些源文件以#开始的预编译指令:

将所有的 #define 删除,并展开所有的宏定义,也就是宏替换。
处理所有的条件编译指令,如: #if #ifdef #elif #else #endif
处理#include 预编译指令,将包含的头文件的内容插入到该预编译指令的位置。这个过程是递归进行的,也就是说被包含的头头件也可能包含其他头件,也就是头文件展开。
删除所有的注释。
添加行号和文件名标识,方便后续编译器生成调试信息等。
或保留所有的#pragma的编译器指令,编译器后续会使用。

注意:

经过预处理后的.i文件中不再包含宏定义,因为宏已经被展开。并且包含的头文件都被插入到.i文件
中。所以当我们无法知道宏定义或者头文件是否包含正确的时候,可以查看预处理后的.i文件来确认。

4.编译

编译过程就是将预处理后的文件进行一系列的:词法分析,语法分析,语义分析以及优化,生成对应的汇编代码文件。

linux命令,执行翻译环境到编译停止:

gcc -S test.i -o test.s

 假设对下面的代码进行编译时,就会有:

array[index] = (index+4)*(2+6);

先经过词法分析,将源代码程序被输⼊扫描器,扫描器的任务就是简单的进行词法分析,把代码中的字符分割成一系列 的记号(关键字、标识符、字⾯量、特殊字符等),就会得到16个记号:、

例如:array为标识符,[,]分别为左方括号与右方括号,赋值乘加括号等。

接下来就是语法的分析语法分析器,将对扫描产生的记号进行语法分析,从而产生语法树。这些语法树是以表达式为节点的树:

然后就是语义分析, 

由语义分析器来完成语义分析,即对表达式的语法层面分析。编译器所能做的分析是语义的静态分
析。静态语义分析通常包括声明和类型的匹配,类型的转换等。这个阶段会报告错误的语法信息。
经过语义标识后的语法数:

5.汇编

汇编指令:

gcc -c test.s -o test.o
汇编器是将汇编代码转转变成机器可执行的指令(二进制指令),每一个汇编语句几乎都对应一条机器指令。
就是根据汇编指令和机器指令的对照表一一的进行翻译,也不做指令优化。

6.链接

链接是一个复杂的过程,链接的时候需要把⼀堆文件链接在一起才生成可执行程序。
链接过程主要包括:地址和空间分配,符号决议和重定位等这些步骤。
链接解决的是一个项目中多文件、多模块之间互相调用的问题。
例如有这样两个文件:
test.c:
#include <stdio.h>
//test.c
//声明外部函数
extern int Add(int x, int y);
//声明外部的全局变量
extern int g_val;
int main()
{
 int a = 10;
 int b = 20;
 int sum = Add(a, b);
 printf("%d\n", sum);
 return 0;
}

add.c:

int g_val = 2022;
int Add(int x, int y)
{
 return x+y;
}
我们已经知道,每个源文件都是单独经过编译器处理生成对应的目标文件。
test.c 经过编译器处理生成 test.o ;add.c 经过编译器处理生成 add.o。
我们在 test.c 的文件中使用了 add.c 文 件中的 Add 函数和 g_val 变量。
我们在 test.c 文 件中每⼀次使用  Add 函数和 g_val 的时候必须确切的知道 Add g_val 的地
址,但是由于每个文件是单独编译的,在编译器编译 test.c 的时候并不知道 Add 函数和 g_val 变量的地址,所以暂时把调用Add 的指令的目标地址和 g_val 的地址搁置。 等待最后链接的时候由链接器根据引用的符号 Add 在其他模块中查找 Add 函数的地址 ,然后将 test.c 中所有引用到 Add 的指令重新修正,让他们的目标地址为真正的 Add 函数的地址,对于全局变量 g_val 也是类似的方法来修正地址。这个地址修正的过程也被叫做 重定向

具体内容可以参考《程序员的自我修养》。

我们只需要知道,在编译阶段,如果没有确定函数的地址,就会在链接阶段再去确定。也就是说当前文件只有声明没有定义,call的时候就没有地址,就需要去链接,链接就需要去符号表(这里的符号表也就是上面提到的)里面找函数的地址;而也有定义的,在编译阶段就能拿到地址,直接call函数的地址就能找到这个函数。

知道这一点,我们再联系一下c++的内联函数就知道:

为什么要在头文件中定义内联函数了(声明定义不分离),因为内联函数不进符号表,所以如果只在头文件声明内联函数,我们在其它文件要调用这个内联函数的时候,编译阶段拿不到地址,然后就会等到链接阶段去符号表里找这个函数的地址,内联函数不进符号表,所以就错了,所以如果要包带有内联函数的头文件,这个内联函数必须要有定义,就是为了让内联函数走不到链接的步骤就找到地址了。

7.运行环境

1. 程序必须载⼊内存中。在有操作系统的环境中:一般这个由操作系统完成。在独立的环境中,程序 的载入必须由手工安排,也可能是通过可执行代码置入只读内存来完成。
2. 程序的执行便开始。接着便调用main函数。
3. 开始执行程序代码。这个时候程序将使用一个运行时堆栈(stack),存储函数的局部变量和返回地址。程序同时也可以使用静态(static)内存,存储于静态内存中的变量在程序的整个执行过程一直保留他们的值。
4. 终止程序。正常终止main函数;也有可能是意外终止。

总结:

程序环境的运行需要结合实际操作,结合所学知识,这样会慢慢的理解的更深,就比如让链接过程的要做的事和内联函数联系到一起,就明白了内联函数为什么要声明和定义不分离,在linux篇中还会加强对此部分的理解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1568529.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[每周一更]-第92期:Go项目中的限流算法

这周五在清明假期内&#xff0c;提前更新文章 很多业务会有限流的场景&#xff0c;比如活动秒杀、社区搜索查询、社区留言功能&#xff1b;保护自身系统和下游系统不被巨型流量冲垮等。 在计算机网络中&#xff0c;限流就是控制网络接口发送或接收请求的速率&#xff0c;它可防…

MyBatis-Plus03

测试自定义功能 首先创建mapper文件夹。 在UserMapper下编写sql语句&#xff08;把namespace改为自己的&#xff09; <?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN""…

查询SQL server数据库在后台执行过的语句

查询SQL server数据库在后台执行过的语句 SELECT TOP 30000total_worker_time/1000 AS [总消耗CPU 时间(ms)],execution_count [运行次数],qs.total_worker_time/qs.execution_count/1000 AS [平均消耗CPU 时间(ms)],last_execution_time AS [最后一次执行时间],min_worker_ti…

Windows系统基于WSL子系统的torchquantum安装记录GPU版本

子系统需要的环境&#xff1a; anaconda/miniconda、pip换源(清华源) 1.准备 torchquantum最新版本可以从github上找到&#xff0c;直接clone/下载整个project&#xff0c;查看环境要求&#xff0c;需要安装pytorch和tensorflow 新建一个conda环境&#xff0c;注意python最…

算法沉淀——动态规划篇(子数组系列问题(下))

算法沉淀——动态规划篇&#xff08;子数组系列问题&#xff08;下&#xff09;&#xff09; 前言一、等差数列划分二、最长湍流子数组三、单词拆分四、环绕字符串中唯一的子字符串 前言 几乎所有的动态规划问题大致可分为以下5个步骤&#xff0c;后续所有问题分析都将基于此 …

【JavaScript 漫游】【052】Proxy

文章简介 本篇文章为【JavaScript 漫游】专栏的第 052 篇文章&#xff0c;记录了 ES6 规范中 Proxy 的知识点。 概述 Proxy 用于修改某些操作的默认行为&#xff0c;等同于在语言层面做出修改&#xff0c;所以属于一种“元编程”&#xff08;meta programming&#xff09;&a…

微信公众号如何开通留言功能?

首先&#xff0c;我们需要了解为什么现在注册的公众号没有留言功能。这是因为所有在2018年之后注册的微信公众号都无法再自带留言功能。这一变化是根据微信的通知而实施的。自2018年2月12日起&#xff0c;微信对新注册的公众号进行了调整&#xff0c;取消了留言功能。这一决策主…

多线程重点知识(个人整理笔记)

目录 1. java 多线程 1.1. 什么是进程?什么是线程? 1.1.1. 进程 1.1.2. 线程 1.1.3. 多线程 2. 并行和并发有什么区别&#xff1f; 3. 守护线程是什么&#xff1f; 4. 创建线程有哪几种方式&#xff1f; 4.1. 线程的常见成员方法 5. 线程安全问题 5.1. synchronize…

伪造靶机之iptables

伪造禁ping、网络不可达、主机不可达、协议、端口的命令 iptables -A INPUT -p icmp --icmp-type echo-request -j DROP iptables -A INPUT -s 172.18.6.89 -p icmp -j REJECT --reject-with icmp-net-unreachable iptables -A INPUT -s 172.18.6.89 -p icmp -j REJECT --re…

HCIA笔记

console 登录设备的特点&#xff1a; 1、带外&#xff0c;不依赖网络本身的连通性。 2、独占&#xff0c;console口不能被多人同时使用&#xff0c;具备唯一性。 3、本地&#xff0c;console口长度有限&#xff0c;一般只能在机房或者设备现场来使用。 4、只能实现命令行的管理…

Golang | Leetcode Golang题解之第7题整数反转

题目&#xff1a; 题解&#xff1a; func reverse(x int) (rev int) {for x ! 0 {if rev < math.MinInt32/10 || rev > math.MaxInt32/10 {return 0}digit : x % 10x / 10rev rev*10 digit}return }

一文搞懂cookie,session,token,JWT到底是怎么进行验证的???

文章目录 cookiesessiontokenJWT 比较 HTTP 协议是一种无状态协议&#xff0c;每次服务端接收到客户端的请求时&#xff0c;都是一个全新且独立请求&#xff0c;这样就无法获取历史请求的记录&#xff0c;为了解决这种机制&#xff0c;让某个域名下的所有网页能够共享某些数据&…

openlayers 入门教程(九):overlay 篇

还是大剑师兰特&#xff1a;曾是美国某知名大学计算机专业研究生&#xff0c;现为航空航海领域高级前端工程师&#xff1b;CSDN知名博主&#xff0c;GIS领域优质创作者&#xff0c;深耕openlayers、leaflet、mapbox、cesium&#xff0c;canvas&#xff0c;webgl&#xff0c;ech…

云原生技术精选:探索腾讯云容器与函数计算的最佳实践

文章目录 写在前面《2023腾讯云容器和函数计算技术实践精选集》深度解读案例集特色&#xff1a;腾讯云的创新实践与技术突破精选案例分析——Stable Diffusion云原生部署的最佳实践精选集实用建议分享总结 写在前面 在数字化转型的浪潮下&#xff0c;云计算技术已成为企业运营…

电脑上怎么压缩图片?三个处理方法介绍

随着我们现在使用图片的地方越来越多&#xff0c;我们处理图片的情况也比较多了&#xff0c;通过压缩图片大小可以使图片文件更小&#xff0c;从而减少存储空间和带宽的使用&#xff0c;同时也可以提高加载速度和性能。良好的图片压缩可以有效地减少文件大小&#xff0c;同时保…

【Spring】使用@Bean和@Import注解配置Bean,与Bean的实例化

目录 1、bean是什么 2、配置bean 2.1、使用Bean注解配置Bean 2.2、使用Import注解配置Bean 3、实例化Bean 1、bean是什么 在 Spring 中&#xff0c;Bean 是指由 Spring 容器管理的对象。Spring IOC 容器负责创建、配置和管理这些 Bean 对象的生命周期。Spring IOC 容器会管…

Linux简单介绍

Linux简单介绍 编译器VMware虚拟机Ubuntu——LinuxOS为什么使用LinuxOS&#xff1f; 目录结构Windows目录结构Linux操作系统home是不是家目录&#xff1f; Linux常用命令终端命令行提示符与权限切换命令tab 作用&#xff1a;自动补全上下箭头pwd命令ls命令mkdir命令touch命令rm…

C++实现vector

目录 前言 1.成员变量 2.成员函数 2.1构造函数 2.2析构函数 2.3begin,end 2.4获取size和capacity 2.5函数重载【】 2.6扩容reserve 2.7resize 2.8insert 2.9删除 2.10尾插、尾删 3.0拷贝构造函数 3.1赋值运算符重载 前言 自主实现C中vector大部分的功能可以使我们更好的理解并使…

flink源码编译-job提交

1、启动standalone集群的taskmanager standalone集群中的taskmanager启动类为 TaskManagerRunner 2 打开master启动类 通过 ctrln快捷键&#xff0c;找到、并打开类&#xff1a; org.apache.flink.runtime.taskexecutor.TaskManagerRunner 3 修改运⾏配置 基本完全按照mas…

高等数学基础篇之导数与微分的运算法则

导数与微分&#xff1a; 一、导数基本公式 二、微分基本公式 三、导数运算法则 四、微分运算法则 一、导数基本公式 二、微分基本公式 三、导数运算法则 四、微分运算法则 有理运算法则 设f(x), g(x)在x处可导&#xff0c;则&#xff1a; 复合函数运算法则 设 yf(u), ug…