算法沉淀——动态规划篇(子数组系列问题(下))

news2025/1/10 19:43:20

算法沉淀——动态规划篇(子数组系列问题(下))

  • 前言
  • 一、等差数列划分
  • 二、最长湍流子数组
  • 三、单词拆分
  • 四、环绕字符串中唯一的子字符串

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程

    • 以上述的dp[i]意义为根据, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。
  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、等差数列划分

【题目】:413. 等差数列划分
【题目】:

 如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。
 给你一个整数数组 nums ,返回数组 nums 中所有为等差数组的 子数组 个数。(子数组 是数组中的一个连续序列)

【示例】:

输入:nums = [1,2,3,4]
输出:3
解释:nums 中有三个子等差数组:[1, 2, 3]、[2, 3, 4] 和 [1,2,3,4] 自身。

【分析】:
 我们可以定义dp[i]表示以i为结尾,等差数组的子数组个数。之后我们可以通过判断(nums[i]、nums[i-1]、nums[i-2])是否构成等差数列,来进一步分析

状态转移方程推导:

  1. 如果nums[i]、nums[i-1]、nums[i-2]不构成等差数列,显然此时以i为结尾的等差数组的子数组个数为0。即dp[i] = 0;
  2. 如果构成等差数列,此时dp[i]的值至少为1。此时我们还需加上dp[i-1]的值。原因在于如果以i-1为结尾的等差数列存在,此时该等差数列公差为dp[i-1] -dp[i-2]。同时nums[i]、nums[i-1]、nums[i-2]构成等差数列,公差也为dp[i-1] -dp[i-2]。这也意味着,以i-1为结尾的所有等差数列,在添加新增nums[i]元素后,依然是等差数列。所以状态转移方程为dp[i] = dp[i - 1] + 1;

细节处理:
 显然当i为1、2时,状态转移方程不适用。我们由于dp[0]、dp[1]一定构不成等差数列,所以我们可以先将dp[0]、dp[1]先初始化为0,在从下标2开始,从左往右填表。

【代码编写】:

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& nums) {
        int n = nums.size();
        vector<int> dp(n);
        int ret = 0;
        for(int i = 2; i < n; i++)
        {
            if(nums[i] - nums[i - 1] == nums[i - 1] - nums[i - 2])
                dp[i] = dp[i - 1] + 1;
            ret += dp[i];//累加所有结果
        }
        return ret;
    }
};

二、最长湍流子数组

【题目链接】:978. 最长湍流子数组
【题目】:

 给定一个整数数组 arr ,返回 arr 的 最大湍流子数组的长度 。如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是 湍流子数组 。
 更正式地来说,当 arr 的子数组 A[i], A[i+1], …, A[j] 满足仅满足下列条件时,我们称其为湍流子数组:
若 i <= k < j :当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
或 若 i <= k < j :当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。

【示例】:

输入:arr = [9,4,2,10,7,8,8,1,9]
输出:5
解释:arr[1] > arr[2] < arr[3] > arr[4] < arr[5]

【分析】:
 我们定义f[i]表示以i位置为结尾,并且最后是“上升”趋势的最长湍流子数组大小;g[i]表示以i位置为结尾,并且最后是“下降”趋势的最长湍流子数组大小。

状态转移方程推导:
 此时以i为结尾的湍流子数组长度可能为1,或大于1。具体如下:

在这里插入图片描述

在这里插入图片描述
特殊处理:
 以i为结尾的湍流子数组中,不管最后一步是呈上升趋势还是下降趋势,最小长度一定为1,即nums[i]本身。所以我们在创建f和g表时,可以将初始值设为1。后续填表过程中,仅需考虑子数组长度大于1的情况即可!!

【代码编写】:

class Solution {
public:
    int maxTurbulenceSize(vector<int>& arr) {
        int n = arr.size();
        vector<int> f(n, 1), g(n, 1);
        int ret = 1;
        for(int i = 1; i < n; i++)
        {
            if(arr[i] > arr[i - 1])
                f[i] = g[i - 1] + 1;
            else if(arr[i] < arr[i - 1])
                g[i] = f[i - 1] + 1;
            ret = max(ret, max(f[i], g[i]));
        }
        return ret;
    }
};

三、单词拆分

【题目链接】:139. 单词拆分
【题目】:

 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。
 注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

【示例】:

输入: s = “applepenapple”, wordDict = [“apple”, “pen”]
输出: true
解释: 返回 true 因为 “applepenapple” 可以由 “apple” “pen” “apple” 拼接成。
注意,你可以重复使用字典中的单词。

【分析】:
 我们可以定义dp[i]表示以i位置为结尾的子字符串是否能单词拆分。

状态转移方程推导:

 要判断从下标从0到i的子串是否能单词拆分。我们可以将0到i的字串分为两部分:0到j-1,j到i(0 <= j <= i)。而dp[j-1]表示以j-1位置为结尾的字串能否单词拆分的结果。此时我们还需判断下标从j到i的字串是否能单词拆分。此时即可判断此种分发是否能实现单词拆分!!
 但由于j的位置不确定。所以我们可以一次将j从开始,逐渐减小到起始下标0。在每次递减过程中,只有存在一种拆分发将拆分出的两个字串都能实现拆分单词,此时dp[i]=true,同时可停止遍历。否则为false;

在这里插入图片描述
细节处理:
 在填dp表过程中,dp[i]的值会用到dp[j-1](0<=j<=i),可能会发生越界访问。所以我们为dp表额外增加一个空间,同时为了保证后续填表的正确性,我们需要将dp[0]初始化为true。
 同时面对字符串问题时,通常需要存在子字符窜问题。此时,下标映射关系可能+1,可能减1。所以这里个原始字符串最开始任意增加一个字符(习惯上该字符为空字符),让原始字符串下标统一向后移动一位。
【代码编写】:

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_map<string, int> hash;
        for(auto& str : wordDict)//后续快速查找是否存在某单词
            hash[str]++;
        int n = s.size();
        vector<bool> dp(n + 1);
        dp[0] = true;//初始化,保证后续填表正确
        s = ' ' + s;//让s下标集体向后移动一位
        for(int i = 1; i <= n; i++)
            for(int j = i; j >= 1; j--)
            {
                if(dp[j - 1] && hash.count(s.substr(j, i - j + 1)))
                {
                    dp[i] = true;
                    break;
                }
            }
        return dp[n];
    }
};

四、环绕字符串中唯一的子字符串

【题目链接】:467. 环绕字符串中唯一的子字符串
【题目】:

【代码编写】:

 定义字符串 base 为一个 “abcdefghijklmnopqrstuvwxyz” 无限环绕的字符串,所以 base 看起来是这样的:

  • “…zabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcd…”。
    给你一个字符串 s ,请你统计并返回 s 中有多少 不同非空子串 也在 base 中出现。

【示例】:

输入:s = “zab”
输出:6
解释:字符串 s 有六个子字符串 (“z”, “a”, “b”, “za”, “ab”, and “zab”) 在 base 中出现。

【分析】:
 我们可以定义dp[i]表示以i位置为结尾的字符串中非空字串在base中出现的个数。

状态转移方程推导:
 非空字串存在于base中有两种可能:

  1. 相邻字符是连续的,即s[i-1] + 1 == s[i]
  2. 相邻字符分别是26个小写字母的结束和开始,即是bashs[i-1] == 'z' && s[i] == 'a'
    所以状态转移方程为:
if((s[i] - s[i - 1] == 1) || (s[i - 1] == 'z' && s[i] == 'a'))
     dp[i] = dp[i - 1] + 1;

细节处理:
 由于当个字符一定存在于base中,所以dp[i]的值最小为1,所以我们可以将dp表中的初始值全部初始化为1。

 上述dp表中的结果存在重复值,不能直接累加。那如何去重?

  • 我们知道以某一个字符为结尾的子串中,长子串一定包含了短子串的所有结果。所以我们可以借助一个26空间大小的数组,将s分割出的字串中,以结尾字符为依据,将最长字串结果放入对应的数组空间中。从而实现去重效果。即:hash[s[i] - 'a'] = max(hash[s[i] - 'a'], dp[i]);
     既然以及去重了,最后只需将数组中的结果累加即可!!


【代码编写】:

class Solution {
public:
    int findSubstringInWraproundString(string s) {
        int n = s.size();
        vector<int> dp(n, 1);
        for(int i = 1; i < n; i++)
            if((s[i] - s[i - 1] == 1) || (s[i - 1] == 'z' && s[i] == 'a'))
                dp[i] = dp[i - 1] + 1;
        
        int hash[26] = {0};
        for(int i = 0; i < n; i++)//去重
            hash[s[i] - 'a'] = max(hash[s[i] - 'a'], dp[i]);

        int ret = 0;
        for(auto x : hash)
            ret += x;
        return ret;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1568519.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【JavaScript 漫游】【052】Proxy

文章简介 本篇文章为【JavaScript 漫游】专栏的第 052 篇文章&#xff0c;记录了 ES6 规范中 Proxy 的知识点。 概述 Proxy 用于修改某些操作的默认行为&#xff0c;等同于在语言层面做出修改&#xff0c;所以属于一种“元编程”&#xff08;meta programming&#xff09;&a…

微信公众号如何开通留言功能?

首先&#xff0c;我们需要了解为什么现在注册的公众号没有留言功能。这是因为所有在2018年之后注册的微信公众号都无法再自带留言功能。这一变化是根据微信的通知而实施的。自2018年2月12日起&#xff0c;微信对新注册的公众号进行了调整&#xff0c;取消了留言功能。这一决策主…

多线程重点知识(个人整理笔记)

目录 1. java 多线程 1.1. 什么是进程?什么是线程? 1.1.1. 进程 1.1.2. 线程 1.1.3. 多线程 2. 并行和并发有什么区别&#xff1f; 3. 守护线程是什么&#xff1f; 4. 创建线程有哪几种方式&#xff1f; 4.1. 线程的常见成员方法 5. 线程安全问题 5.1. synchronize…

伪造靶机之iptables

伪造禁ping、网络不可达、主机不可达、协议、端口的命令 iptables -A INPUT -p icmp --icmp-type echo-request -j DROP iptables -A INPUT -s 172.18.6.89 -p icmp -j REJECT --reject-with icmp-net-unreachable iptables -A INPUT -s 172.18.6.89 -p icmp -j REJECT --re…

HCIA笔记

console 登录设备的特点&#xff1a; 1、带外&#xff0c;不依赖网络本身的连通性。 2、独占&#xff0c;console口不能被多人同时使用&#xff0c;具备唯一性。 3、本地&#xff0c;console口长度有限&#xff0c;一般只能在机房或者设备现场来使用。 4、只能实现命令行的管理…

Golang | Leetcode Golang题解之第7题整数反转

题目&#xff1a; 题解&#xff1a; func reverse(x int) (rev int) {for x ! 0 {if rev < math.MinInt32/10 || rev > math.MaxInt32/10 {return 0}digit : x % 10x / 10rev rev*10 digit}return }

一文搞懂cookie,session,token,JWT到底是怎么进行验证的???

文章目录 cookiesessiontokenJWT 比较 HTTP 协议是一种无状态协议&#xff0c;每次服务端接收到客户端的请求时&#xff0c;都是一个全新且独立请求&#xff0c;这样就无法获取历史请求的记录&#xff0c;为了解决这种机制&#xff0c;让某个域名下的所有网页能够共享某些数据&…

openlayers 入门教程(九):overlay 篇

还是大剑师兰特&#xff1a;曾是美国某知名大学计算机专业研究生&#xff0c;现为航空航海领域高级前端工程师&#xff1b;CSDN知名博主&#xff0c;GIS领域优质创作者&#xff0c;深耕openlayers、leaflet、mapbox、cesium&#xff0c;canvas&#xff0c;webgl&#xff0c;ech…

云原生技术精选:探索腾讯云容器与函数计算的最佳实践

文章目录 写在前面《2023腾讯云容器和函数计算技术实践精选集》深度解读案例集特色&#xff1a;腾讯云的创新实践与技术突破精选案例分析——Stable Diffusion云原生部署的最佳实践精选集实用建议分享总结 写在前面 在数字化转型的浪潮下&#xff0c;云计算技术已成为企业运营…

电脑上怎么压缩图片?三个处理方法介绍

随着我们现在使用图片的地方越来越多&#xff0c;我们处理图片的情况也比较多了&#xff0c;通过压缩图片大小可以使图片文件更小&#xff0c;从而减少存储空间和带宽的使用&#xff0c;同时也可以提高加载速度和性能。良好的图片压缩可以有效地减少文件大小&#xff0c;同时保…

【Spring】使用@Bean和@Import注解配置Bean,与Bean的实例化

目录 1、bean是什么 2、配置bean 2.1、使用Bean注解配置Bean 2.2、使用Import注解配置Bean 3、实例化Bean 1、bean是什么 在 Spring 中&#xff0c;Bean 是指由 Spring 容器管理的对象。Spring IOC 容器负责创建、配置和管理这些 Bean 对象的生命周期。Spring IOC 容器会管…

Linux简单介绍

Linux简单介绍 编译器VMware虚拟机Ubuntu——LinuxOS为什么使用LinuxOS&#xff1f; 目录结构Windows目录结构Linux操作系统home是不是家目录&#xff1f; Linux常用命令终端命令行提示符与权限切换命令tab 作用&#xff1a;自动补全上下箭头pwd命令ls命令mkdir命令touch命令rm…

C++实现vector

目录 前言 1.成员变量 2.成员函数 2.1构造函数 2.2析构函数 2.3begin,end 2.4获取size和capacity 2.5函数重载【】 2.6扩容reserve 2.7resize 2.8insert 2.9删除 2.10尾插、尾删 3.0拷贝构造函数 3.1赋值运算符重载 前言 自主实现C中vector大部分的功能可以使我们更好的理解并使…

flink源码编译-job提交

1、启动standalone集群的taskmanager standalone集群中的taskmanager启动类为 TaskManagerRunner 2 打开master启动类 通过 ctrln快捷键&#xff0c;找到、并打开类&#xff1a; org.apache.flink.runtime.taskexecutor.TaskManagerRunner 3 修改运⾏配置 基本完全按照mas…

高等数学基础篇之导数与微分的运算法则

导数与微分&#xff1a; 一、导数基本公式 二、微分基本公式 三、导数运算法则 四、微分运算法则 一、导数基本公式 二、微分基本公式 三、导数运算法则 四、微分运算法则 有理运算法则 设f(x), g(x)在x处可导&#xff0c;则&#xff1a; 复合函数运算法则 设 yf(u), ug…

【JavaScript】函数 ① ( 函数引入 | 函数声明 | 函数调用 )

文章目录 一、JavaScript 函数1、函数引入2、函数声明3、函数调用4、代码示例 - 函数声明调用 一、JavaScript 函数 1、函数引入 JavaScript 代码编写时 , 会遇到 定义 大量相同或相似代码的 场景 , 这些代码可能需要重复使用 , 这种情况下就需要 将 这些代码 定义在 函数 中 ;…

解决Vue中仓库持久化的问题,不借助插件用原生JS实现仓库持久化。了解仓库的插件机制、监听的时机

1、演示 前言&#xff1a;目前Vue有两种仓库&#xff0c;一种是Vuex&#xff0c;一种是Pinia&#xff0c;懂得都懂&#xff0c;这里就不详细介绍这两者的区别了 2、什么是持久化 仓库里面的数据是需要跨越页面周期的&#xff0c;当页面刷新之后数据还在&#xff0c;在默认情况下…

NoSQL之Redis

目录 一、关系型数据库与非关系型数据库 1.关系数据库 2.非关系数据库 2.1非关系型数据库产生背景 3.关系型数据库与非关系型数据区别 &#xff08;1&#xff09;数据存储方式不同 &#xff08;2&#xff09;扩展方式不同 &#xff08;3&#xff09;对事物性的支持不同 …

日常生活中使用的 4 个核心开发工具

长话短说 本文列出了 2024 年我作为开发人员在日常生活中最常用的 4 个工具。✅ 这些工具旨在提高您的编辑技能、终端导航、笔记以及在应用程序容器化之外使用 Docker。另外&#xff0c;最后我还给大家准备了一个小惊喜。 如果您没有使用本文中至少提到的 1-2 个工具&#xf…

银行数字化转型导师坚鹏:银行数字化转型必知的3大客户分析维度

银行数字化转型需要进行客户分析&#xff0c;如何进行客户分析呢&#xff1f;银行数字化转型导师坚鹏认为至少从客户需求分析、客户画像分析、客户购买行为分析3个维度进行客户分析。 1.客户需求分析 银行数字化转型需要了解客户需求&#xff0c;不同年龄段的客户有不同的需求…