【c++】STl-list使用list模拟实现

news2025/1/11 7:58:33

主页:醋溜马桶圈-CSDN博客

专栏:c++_醋溜马桶圈的博客-CSDN博客

gitee:mnxcc (mnxcc) - Gitee.com

目录

1. list的介绍及使用

1.1 list的介绍

1.2 list的使用  

1.2.1 list的构造

1.2.2 list iterator的使用

1.2.3 list capacity

1.2.4 list element access

1.2.5 list modifiers

1.2.6 list的迭代器失效

2. list的深度剖析及模拟实现

2.1 模拟实现list

2.2 list的反向迭代器 

3. list与vector的对比

3.1 list与vector的对比

3.2 对比list排序和vector排序


1. list的介绍及使用

1.1 list的介绍

list - C++ Reference (cplusplus.com)

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

1.2 list的使用  

list中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展的能力。以下为list中一些常见的重要接口

1.2.1 list的构造

1.2.2 list iterator的使用

此处,大家可暂时将迭代器理解成一个指针,该指针指向list中的某个节点

【注意】

  1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
  2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

1.2.3 list capacity

1.2.4 list element access

1.2.5 list modifiers

	list<int> lt;
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);
	lt.push_back(4);
	lt.push_back(4);
	lt.push_back(4);
	lt.push_back(4);

1.2.6 list的迭代器失效

前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

2. list的深度剖析及模拟实现

2.1 模拟实现list

#pragma once
#include <assert.h>
#include <iostream>
using namespace std;

namespace dc
{
	template<class T>
	struct ListNode
	{
		ListNode<T>* _next;
		ListNode<T>* _prev;
		T _data;

		ListNode(const T& x=T())
		:_next(nullptr)
		,_prev(nullptr)
		,_data(x)
		{}
	};
	//typedef ListIterator<T, T&, T*> iterator;
	//typedef ListIterator<T, const T&, const T*> const_iterator;
	template<class T,class Ref,class Ptr>
	struct ListIterator
	{
		typedef ListNode<T> Node;
		typedef ListIterator<T, Ref, Ptr> Self;

		Node* _node;
		
		ListIterator(Node* node)
			:_node(node)
		{}
		//*it
		//T& operator*()
		Ref operator*()
		{
			return _node->_data;
		}
		//it->
		//T* operator->()
		Ptr operator->()
		{
			return &_node->_data;
		}
		//++it
		Self& operator++()
		{
			_node = _node->_next;
			return *this;
		}
		//it++
		Self operator++(int)
		{
			Self tmp(*this);
			_node = _node->_next;
			return tmp;
		}
		//--it
		Self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}
		//it--
		Self operator--(int)
		{
			Self tmp(*this);
			_node = _node->_prev;
			return tmp;
		}
		bool operator!=(const Self& it)
		{
			return _node != it._node;
		}		
		bool operator==(const Self& it)
		{
			return _node == it._node;
		}
	};

	//template<class T>
	//struct ListConstIterator
	//{
	//	typedef ListNode<T> Node;
	//	typedef ListConstIterator<T> Self;
	//	Node* _node;
	//	ListConstIterator(Node* node)
	//		:_node(node)
	//	{}
	//	//*it
	//	const T& operator*()
	//	{
	//		return _node->_data;
	//	}
	//	//it->
	//	const T* operator->()
	//	{
	//		return &_node->_data;
	//	}
	//	//++it
	//	Self& operator++()
	//	{
	//		_node = _node->_next;
	//		return *this;
	//	}
	//	//it++
	//	Self operator++(int)
	//	{
	//		Self tmp(*this);
	//		_node = _node->_next;
	//		return tmp;
	//	}
	//	//--it
	//	Self& operator--()
	//	{
	//		_node = _node->_prev;
	//		return *this;
	//	}
	//	//it--
	//	Self operator--(int)
	//	{
	//		Self tmp(*this);
	//		_node = _node->_prev;
	//		return tmp;
	//	}
	//	bool operator!=(const Self& it)
	//	{
	//		return _node != it._node;
	//	}
	//	bool operator==(const Self& it)
	//	{
	//		return _node == it._node;
	//	}
	//};

	template<class T>
	class list
	{
		typedef ListNode<T> Node;
	public:
		//typedef ListIterator<T> iterator;
		//typedef ListConstIterator<T> const_iterator;
		typedef ListIterator<T, T&, T*> iterator;
		typedef ListIterator<T, const T&, const T*> const_iterator;

		iterator begin()
		{
			//return _head->_next;

			return _head->_next;
		}
		iterator end()
		{
			return _head;
		}

		const_iterator begin() const
		{
			//return _head->_next;

			return _head->_next;
		}
		const_iterator end() const
		{
			return _head;
		}
		//初始化头结点
		void empty_init()
		{
			_head = new Node;
			_head->_next = _head;
			_head->_prev = _head;
			_size = 0;
		}
		list()
		{
			empty_init();
		}
		//lt2(lt1)
		list(const list<T>& lt)
		{
			empty_init();
			for (auto& e : lt)
			{
				push_back(e);
			}
		}
		//需要析构,一般就需要自己写深拷贝
		//不需要析构,默认浅拷贝就可以
		void swap(list<T>& lt)
		{
			std::swap(_head, lt._head);
			std::swap(_size, lt._size);
		}
		//lt1=lt3
		list<T>& operator=(list<T> lt)
		{
			swap(lt);
			return *this;
		}
		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}
		}
		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}
		//void push_back(const T& x)
		//{
		//	Node* newnode = new Node(x);
		//	Node* tail = _head->_prev;
		//	tail->_next = newnode;
		//	newnode->_prev = tail;
		//	_head->_prev = newnode;
		//	newnode->_next = _head;
		//}
		void push_back(const T& x)
		{
			insert(end(), x);
		}
		void push_front(const T& x)
		{
			insert(begin(), x);
		}
		void pop_back()
		{
			erase(--end());
		}
		void pop_front()
		{
			erase(begin());
		}
		void insert(iterator pos, const T& val)
		{
			Node* cur = pos._node;
			Node* newnode = new Node(val);
			Node* prev = cur->_prev;
			prev->_next = newnode;
			newnode->_next = cur;
			cur->_prev = newnode;
			newnode->_prev = prev;
			_size++;
		}
		iterator erase(iterator pos)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;
			prev->_next = next;
			next->_prev = prev;
			delete cur;
			_size--;
			return iterator(next);
		}
		size_t size() const
		{
			return _size;
		}
		bool empty()
		{
			return _size == 0;
		}


	private:
		Node* _head;
		size_t _size;
	};
}

2.2 list的反向迭代器 

通过前面例子知道,反向迭代器的++就是正向迭代器的--,反向迭代器的--就是正向迭代器的++,因此反向迭代器的实现可以借助正向迭代器,即:反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行包装即可

template<class Iterator>
class ReverseListIterator
{
	// 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的类型,而不是静态成员变量
	// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量
	// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
public:
	typedef typename Iterator::Ref Ref;
	typedef typename Iterator::Ptr Ptr;
	typedef ReverseListIterator<Iterator> Self;
public:
	//
	// 构造
	ReverseListIterator(Iterator it) : _it(it) {}
	//
	// 具有指针类似行为
	Ref operator*() {
		Iterator temp(_it);
		--temp;
		return *temp;
	}
	Ptr operator->() { return &(operator*()); }
	//
	// 迭代器支持移动
	Self& operator++() {
		--_it;
		return *this;
	}
	Self operator++(int) {
		Self temp(*this);
		--_it;
		return temp;
	}
	Self& operator--() {
		++_it;
		return *this;
	}
	Self operator--(int)
	{
		Self temp(*this);
		++_it;
		return temp;
	}
	//
	// 迭代器支持比较
	bool operator!=(const Self& l)const { return _it != l._it; }
	bool operator==(const Self& l)const { return _it != l._it; }
	Iterator _it;
};

3. listvector的对比

3.1 listvector的对比

vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不 同,其主要不同如下

3.2 对比list排序和vector排序

void test2()
{
	srand(time(0));
	const int N = 1000000;
	list<int> lt1;
	list<int> lt2;
	vector<int> v;
	for (int i = 0; i < N; i++)
	{
		auto e = rand()+i;
		lt1.push_back(e);
		v.push_back(e);
	}
	int begin1 = clock();
	//排序
	sort(v.begin(), v.end());
	int end1 = clock();

	int begin2 = clock();
	lt1.sort();
	int end2 = clock();
	printf("vector sort:%d\n", end1 - begin1);
	printf("list sort:%d\n", end2 - begin2);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1566156.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法学习 | day34/60 不同路径/不同路径II

一、题目打卡 1.1 不同路径 题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 拿到手&#xff0c;首先见到答案需要求的是种类的个数&#xff0c;并且看题目&#xff0c;每次移动的时候只有两个方向&#xff0c;这也就说明&#xff0c;对于某一个位置来说&#x…

[已解决]Vue3+Element-plus使用el-dialog对话框无法显示

文章目录 问题发现原因分析解决方法 问题发现 点击按钮&#xff0c;没有想要的弹框 代码如下 修改 el-dialog到body中&#xff0c;还是不能显示 原因分析 使用devtool中vue工具进行查看组件结构 原因在于&#xff0c;在一个局部组件(Detail->ElTabPane->…)中使用…

C++初阶:list类及模拟实现

list的介绍及使用 list的介绍 list 1. list 是可以在常数范围内在任意位置进行插入和删除的序列式容器&#xff0c;并且该容器可以前后双向迭代。 2. list 的底层是双向链表结构&#xff0c;双向链表中每个元素存储在互不相关的独立节点中&#xff0c;在节点中通过指针指向…

代码随想录算法训练营第二十二天| 235.二叉搜索树的最近公共祖先、701.二叉搜索树中的插入操作、450.删除二叉搜索树中的节点

系列文章目录 目录 系列文章目录235. 二叉搜索树的最近公共祖先①递归法自己写的简洁版 ②迭代法不能这样写&#xff01;正确写法 701.二叉搜索树中的插入操作①递归法②迭代法 450.删除二叉搜索树中的节点递归法 235. 二叉搜索树的最近公共祖先 ①递归法 自己写的 class So…

【C+ +】第一个C+ + 项目的创建及namespace命名空间解释C++中的输入输出

目录 1.创建第一个c项目 1.1项目创建 1.2 .cpp源文件建立 1.3 第一个c程序hello world对比c语言hello world 2.命名空间 2.1 C关键字 2.2 命名空间---解决c语言中的命名冲突 2.2.1 namespace命名空间用法 2.2.2 &#xff1a;&#xff1a; 预作用限定符 2.2.3 命名空间的嵌套…

SCI一区 | Matlab实现BES-TCN-BiGRU-Attention秃鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现BES-TCN-BiGRU-Attention秃鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现BES-TCN-BiGRU-Attention秃鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述程序…

rasa trian 报错解决---Project validation completed with errors.

rasa train 过程中&#xff1a;出现一下问题&#xff1b; Project validation completed with errors. 解决措施:python 3.10版本&#xff0c;rasa 3.6.19, 降低版本 pip3 install rasa3.5.17 -i https://pypi.tuna.tsinghua.edu.cn/simple成功解决

Vue3:Pinia简介及环境搭建

一、简介 Pinia是Vue3中的状态管理工具&#xff0c;类似与Vue2中的Vuex框架的作用 二、环境搭建 1、安装 npm install pinia2、配置 main.ts import {createApp} from vue import App from ./App.vue // 第一步&#xff1a;引入pinia import {createPinia} from piniacons…

SWM341系列应用(SFC和SPI应用)

SWM341系列 SFC和SPI应用 1、针对具有QSPI功能的SPI-NORFLASH&#xff0c;如需要使用4线数据为&#xff08;4BIT&#xff09;方式进行读操作&#xff0c;则需要将QE位使能&#xff0c;再开启4BIT的都操作指令后进行读取。 如没有开启QE位&#xff0c;则用4BIT进行读取的数据会有…

一维卷积神经网络的特征可视化

随着以深度学习为代表的人工智能技术的不断发展&#xff0c;许多具有重要意义的深度学习模型和算法被开发出来&#xff0c;应用于计算机视觉、自然语言处理、语音处理、生物医疗、金融应用等众多行业领域。深度学习先进的数据挖掘、训练和分析能力来源于深度神经网络的海量模型…

VUE——生命周期

概念&#xff1a; mounted:挂载 new Vue({el: "#x",data: {},methods: {},mounted() {}, }) 系统会自己调用&#xff0c;不需要我们调用。 案例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><…

go包下载时报proxyconnect tcp: dial tcp 127.0.0.1:80: connectex错误的解决方案

一大早的GoLand就开始抽风了&#xff0c;好几个文件import都红了&#xff0c;于是我正常操作点击提示的sync&#xff0c;但是却报了一堆错&#xff1a; go: downloading google.golang.org/grpc v1.61.1 go: downloading google.golang.org/genproto v0.0.0-20240228224816-df9…

荣誉 | 人大金仓连续三年入选“金融信创优秀解决方案”

3月28日&#xff0c;由中国人民银行领导&#xff0c;中国金融电子化集团有限公司牵头组建的金融信创生态实验室发布“第三期金融信创优秀解决方案”&#xff0c;人大金仓新一代手机银行系统解决方案成功入选&#xff0c;这也是人大金仓金融行业解决方案连续第三年获得用户认可。…

C++STL--排序算法

sort 使用快速排序,平均性能好O(nlogn),但最差情况可能很差O(n^2)。不稳定。 sort(v.begin(),v.end());//对v容器进行排序,默认升序 sort(v.begin(),v.end(),greater<int>());//降序排序对于支持随机访问的迭代器的容器&#xff0c; 都可以利用sort算法直接对其进行排序…

【漏洞复现】用友NC cloud uploadChunk 存在任意文件上传

0x01 阅读须知 “如棠安全的技术文章仅供参考&#xff0c;此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等&#xff08;包括但不限于&#xff09;进行检测或维护参考&#xff0c;未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供…

软考 系统架构设计师系列知识点之云原生架构设计理论与实践(13)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之云原生架构设计理论与实践&#xff08;12&#xff09; 所属章节&#xff1a; 第14章. 云原生架构设计理论与实践 第3节 云原生架构相关技术 14.3.2 云原生微服务 1. 微服务发展背景 过去开发一个后端应用最为直接的方…

Appium如何自动判断浏览器驱动

问题&#xff1a;有的测试机chrome是这个版本&#xff0c;有的是另一个版本&#xff0c;怎么能让自动判断去跑呢&#xff1f;&#xff1f; 解决办法&#xff1a;使用appium的chromedriverExecutableDir和chromedriverChromeMappingFile 切忌使用chromedriverExecutableDir和c…

Scala第十八章节(Iterable集合、Seq集合、Set集合、Map集合以及统计字符个数案例)

Scala第十八章节 章节目标 掌握Iterable集合相关内容.掌握Seq集合相关内容.掌握Set集合相关内容.掌握Map集合相关内容.掌握统计字符个数案例. 1. Iterable 1.1 概述 Iterable代表一个可以迭代的集合, 它继承了Traversable特质, 同时也是其他集合的父特质. 最重要的是, 它定…

Python基础中易错点分享

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 一、方法当变量使用二、字符串使用1.输出一个长句子换行时&#xff0c;需要使用续行符“\”&#xff0c;否则报错2.字符串的格式化3.字符串格式化之format()函数4.浅…

肿瘤免疫反应瀑布图(源于The Miller Lab)

目录 数据格式 绘图 ①根据剂量 ②根据type ③根据治疗响应度 添加水平线 数据格式 肿瘤免疫响应数据 rm(list ls()) library(tidyverse) library(dplyr) library(knitr)#模拟数据 # We will randomly assign the two doses, 80 mg or 150 mg, to the 56 subjects Me…