一维卷积神经网络的特征可视化

news2025/1/11 8:17:24

随着以深度学习为代表的人工智能技术的不断发展,许多具有重要意义的深度学习模型和算法被开发出来,应用于计算机视觉、自然语言处理、语音处理、生物医疗、金融应用等众多行业领域。深度学习先进的数据挖掘、训练和分析能力来源于深度神经网络的海量模型参数以及高度非线性。也正因为深度学习算法的高度复杂性,许多模型往往难以解释其内部工作原理,这导致这些模型被称为缺乏可解释性的“黑箱模型”。

随着AI应用渗透到各行各业,AI的科技伦理受到广泛的关注。而科技伦理的一个核心议题就是可解释人工智能XAI。从社会科学角度,可解释性是指人对决策原因的理解程度,可解释性越高,人就越能理解为什么做出这样的决策。对应于AI领域,可解释性是指能够在一定程度上揭示AI模型内部工作机制和对模型结果的进行解释,帮助用户理解模型是如何做出预测或决策的。

因此,本文简单地对一维卷积神经网络的特征进行可视化,运行环境为Python,研究对象为心电信号。

首先导入相关库

import pandas as pd
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

import signal_screen
import signal_screen_tools

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv1D, MaxPool1D, Flatten, BatchNormalization, Input
from tensorflow.keras.callbacks import ModelCheckpoint

数据导入及处理

# load data
data_train = pd.read_csv("mitbih_train.csv", sep=",", header=None).to_numpy()
data_test = pd.read_csv("mitbih_test.csv", sep=",", header=None).to_numpy()

# get X and y
X_train, y_train = data_train[:, :data_train.shape[1]-2], data_train[:, -1]
X_test, y_test = data_test[:, :data_test.shape[1]-2], data_test[:, -1]

# number of categories
num_of_categories = np.unique(y_train).shape[0]

del data_train, data_test

#indexing examples to show visualisations
examples_to_visualise = [np.where(y_test == i)[0][0] for i in range(5)]
titles = [ "nonectopic", "supraventricular ectopic beat", "ventricular ectopic beat", "fusion beat", "unknown"]

# creation of tensors
X_train = np.expand_dims(tf.convert_to_tensor(X_train), axis=2)
X_test = np.expand_dims(tf.convert_to_tensor(X_test), axis=2)

# one-hot encoding for 5 categories
y_train = tf.one_hot(y_train, num_of_categories)
y_test = tf.one_hot(y_test, num_of_categories)

建立模型并进行训练

# basic model
model = Sequential([
    Input(shape=[X_train.shape[1], 1]),
    Conv1D(filters=16, kernel_size=3, activation="relu"),
    BatchNormalization(),
    MaxPool1D(),
    Conv1D(filters=32, kernel_size=3, activation="relu"),
    BatchNormalization(),
    Conv1D(filters=64, kernel_size=3, activation="relu"),
    BatchNormalization(),
    Flatten(),
    Dense(20, activation="relu"),
    Dense(num_of_categories, activation="softmax")
]
)

# train process

model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])

checkPoint = ModelCheckpoint(filepath="model.h5", save_weights_only=False, monitor='val_accuracy',
                            mode='max', save_best_only=True)

model.fit(x=np.expand_dims(X_train, axis=2), y=y_train,
          batch_size=128, epochs=10, validation_data=(np.expand_dims(X_test, axis=2), y_test),
          callbacks=[checkPoint])

model = tf.keras.models.load_model("model.h5")
loss, acc = model.evaluate(np.expand_dims(X_test, axis=2), y_test)

采用Occlusion Sensitivity方法进行可视化,相关的参考文献较多。

fig, axs = plt.subplots(nrows=5, ncols=1)
fig.suptitle("Occlusion sensitivity")
fig.tight_layout()
fig.set_size_inches(10, 10)
axs = axs.ravel()

for c, row, ax, title in zip(range(5), examples_to_visualise, axs, titles):
    sensitivity, _ = signal_screen.calculate_occlusion_sensitivity(model=model,
                                                         data=np.expand_dims(X_test[row, :], axis=(0, 2)),
                                                         c=c,
                                                         number_of_zeros=[15])

    # create gradient plot
    signal_screen_tools.plot_with_gradient(ax=ax, y=X_test[row, :].ravel(), gradient=sensitivity[0], title=title)
    ax.set_xlabel("Samples[-]")
    ax.set_ylabel("ECG [-]")

plt.show()

采用Saliency map方法进行可视化。

采用Grad-CAM方法进行可视化。

工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1566139.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VUE——生命周期

概念&#xff1a; mounted:挂载 new Vue({el: "#x",data: {},methods: {},mounted() {}, }) 系统会自己调用&#xff0c;不需要我们调用。 案例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><…

go包下载时报proxyconnect tcp: dial tcp 127.0.0.1:80: connectex错误的解决方案

一大早的GoLand就开始抽风了&#xff0c;好几个文件import都红了&#xff0c;于是我正常操作点击提示的sync&#xff0c;但是却报了一堆错&#xff1a; go: downloading google.golang.org/grpc v1.61.1 go: downloading google.golang.org/genproto v0.0.0-20240228224816-df9…

荣誉 | 人大金仓连续三年入选“金融信创优秀解决方案”

3月28日&#xff0c;由中国人民银行领导&#xff0c;中国金融电子化集团有限公司牵头组建的金融信创生态实验室发布“第三期金融信创优秀解决方案”&#xff0c;人大金仓新一代手机银行系统解决方案成功入选&#xff0c;这也是人大金仓金融行业解决方案连续第三年获得用户认可。…

C++STL--排序算法

sort 使用快速排序,平均性能好O(nlogn),但最差情况可能很差O(n^2)。不稳定。 sort(v.begin(),v.end());//对v容器进行排序,默认升序 sort(v.begin(),v.end(),greater<int>());//降序排序对于支持随机访问的迭代器的容器&#xff0c; 都可以利用sort算法直接对其进行排序…

【漏洞复现】用友NC cloud uploadChunk 存在任意文件上传

0x01 阅读须知 “如棠安全的技术文章仅供参考&#xff0c;此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等&#xff08;包括但不限于&#xff09;进行检测或维护参考&#xff0c;未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供…

软考 系统架构设计师系列知识点之云原生架构设计理论与实践(13)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之云原生架构设计理论与实践&#xff08;12&#xff09; 所属章节&#xff1a; 第14章. 云原生架构设计理论与实践 第3节 云原生架构相关技术 14.3.2 云原生微服务 1. 微服务发展背景 过去开发一个后端应用最为直接的方…

Appium如何自动判断浏览器驱动

问题&#xff1a;有的测试机chrome是这个版本&#xff0c;有的是另一个版本&#xff0c;怎么能让自动判断去跑呢&#xff1f;&#xff1f; 解决办法&#xff1a;使用appium的chromedriverExecutableDir和chromedriverChromeMappingFile 切忌使用chromedriverExecutableDir和c…

Scala第十八章节(Iterable集合、Seq集合、Set集合、Map集合以及统计字符个数案例)

Scala第十八章节 章节目标 掌握Iterable集合相关内容.掌握Seq集合相关内容.掌握Set集合相关内容.掌握Map集合相关内容.掌握统计字符个数案例. 1. Iterable 1.1 概述 Iterable代表一个可以迭代的集合, 它继承了Traversable特质, 同时也是其他集合的父特质. 最重要的是, 它定…

Python基础中易错点分享

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 一、方法当变量使用二、字符串使用1.输出一个长句子换行时&#xff0c;需要使用续行符“\”&#xff0c;否则报错2.字符串的格式化3.字符串格式化之format()函数4.浅…

肿瘤免疫反应瀑布图(源于The Miller Lab)

目录 数据格式 绘图 ①根据剂量 ②根据type ③根据治疗响应度 添加水平线 数据格式 肿瘤免疫响应数据 rm(list ls()) library(tidyverse) library(dplyr) library(knitr)#模拟数据 # We will randomly assign the two doses, 80 mg or 150 mg, to the 56 subjects Me…

【星城战记】揭秘成本控制奥秘 如何超越个人开店!

在电玩城行业的竞争中&#xff0c;成本控制和运营管理是决定企业盈利能力和生存空间的关键因素。许多投资者在选择投资项目时&#xff0c;往往忽视了这两个方面的重要性&#xff0c;导致在运营过程中遭遇重重困难。而【星城战记】作为行业内的佼佼者&#xff0c;以其卓越的成本…

ruoyi-vue-pro 前端vue js直接import导入本地文件使用方法

第一步&#xff0c;删除所有依赖&#xff0c;否则配置以后就会启动报错&#xff1a; 第二步配置对应的文件格式&#xff0c;我当前使用的是xml文件 config.module.rule(xml).test(/\.xml$/).use(xml-loader).loader(xml-loader).end();第三步重新安装所有依赖&#xff1a; …

编译 amd gpu 核心态驱动 rocm kmd linux kernel

AMD 开源了专门的 ROCm 的kmd Linux Kernel&#xff0c; 1,下载源代码 git clone --recursive https://github.com/ROCm/ROCK-Kernel-Driver.gitcd ROCK-Kernel-Driver/git checkout rocm-6.0.22,配置kernel cp -v /boot/config-$(uname -r) .config make menuconfig Graph…

Windows下Docker安装Kafka3+集群

编写 docker-compose.yaml 主要参照&#xff1a;https://www.cnblogs.com/wangguishe/p/17563274.html version: "3"services:kafka1:image: bitnami/kafka:3.4.1container_name: kafka1environment:- KAFKA_HEAP_OPTS-Xmx1024m -Xms1024m- KAFKA_ENABLE_KRAFTyes- K…

Java编程使用CGLIB动态代理介绍与实战演示

文章目录 前言技术积累核心概念主要功能适用场景与JDK动态代理的对比 实战演示定义待代理的目标类实现MethodInterceptor接口使用代理对象 测试结果写在最后 前言 在Java编程中&#xff0c;CGLIB (Code Generation Library) 是一个强大的高性能代码生成库&#xff0c;它通过生…

Python网络爬虫(三):Selenium--以携程酒店为例

1 Selenium简介 Selenium是一个用于网站应用程序自动化的工具&#xff0c;它可以直接运行在浏览器中&#xff0c;就像真正的用户在操作一样。它相当于一个机器人&#xff0c;可以模拟人类在浏览器上的一些行为&#xff0c;比如输入文本、点击、回车等。Selenium支持多种浏览器&…

数据分析之POWER BI Desktop可视化应用案列

在power bi中导入数据 导入前期建好的模型 简单介绍&#xff08;power bi desktop&#xff09; 将右边字段全部展开 各类数据 所作的模型 在excel中是单向的&#xff0c;power bi 中可以是双向的 右键单击----点击属性 选择两个---在两个方向上应用安全筛选器 变为双向的…

wireshark解析grpc/protobuf的方法

1&#xff0c;wireshark需要安装3.20以上 下载地址&#xff1a;https://www.wireshark.org/ 2&#xff0c;如果版本不对&#xff0c;需要卸载&#xff0c;卸载方法&#xff1a; sudo rm -rf /Applications/Wireshark.app sudo rm -rf $HOME/.config/wireshark sudo rm -rf /…

c++|vector使用及模拟实现

目录 一、vector的介绍 二、vector的使用(常用接口) 2.1string类的成员函数 2.1.1构造函数 2.1.2析构函数 2.1.3“”运算符重载函数 2.2 迭代器(iterator) 及 对象的遍历访问 2.2.1iterator 2.2.2 operator[] && at() 2.2.4 back() && front() 2.2…

认识什么是Git

目录 1. 认识Git 1.1. 问题引入 1.2. 概念 1.3. 作用 1.4. 如何学 1.5. Git 安装 1.6. Git配置用户信息 2. Git仓库 2.1. Git 仓库&#xff08;repository&#xff09; 2.2. 创建 2.3. 需求 3. Git的三个区域 3.1. Git 使用时的三个区域 3.2. 工作区的内容&#…