吴恩达机器学习笔记:第 6 周-11机器学习系统的设计(Machine Learning System Design)11.1-11.2

news2025/1/21 18:37:32

目录

  • 第 6 周 11、 机器学习系统的设计(Machine Learning System Design)
    • 11.1 首先要做什么
    • 11.2 误差分析
    • 11.3 类偏斜的误差度量

第 6 周 11、 机器学习系统的设计(Machine Learning System Design)

11.1 首先要做什么

在接下来的视频中,我将谈到机器学习系统的设计。这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题。同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议。

本周以一个垃圾邮件分类器算法为例进行讨论。

为了解决这样一个问题,我们首先要做的决定是如何选择并表达特征向量𝑥。我们可以选择一个由 100 个最常出现在垃圾邮件中的词所构成的列表,根据这些词是否有在邮件中出现,来获得我们的特征向量(出现为 1,不出现为 0),尺寸为 100×1。

为了构建这个分类器算法,我们可以做很多事,例如:

  1. 收集更多的数据,让我们有更多的垃圾邮件和非垃圾邮件的样本
  2. 基于邮件的路由信息开发一系列复杂的特征
  3. 基于邮件的正文信息开发一系列复杂的特征,包括考虑截词的处理
  4. 为探测刻意的拼写错误(把 watch 写成 w4tch)开发复杂的算法

在上面这些选项中,非常难决定应该在哪一项上花费时间和精力,作出明智的选择,比随着感觉走要更好。当我们使用机器学习时,总是可以“头脑风暴”一下,想出一堆方法来试试。实际上,当你需要通过头脑风暴来想出不同方法来尝试去提高精度的时候,你可能已经超越了很多人了。大部分人并不尝试着列出可能的方法,他们做的只是某天早上醒来,因为某些原因有了一个突发奇想:“让我们来试试用 Honey Pot 项目收集大量的数据吧。”

我们将在随后的课程中讲误差分析,我会告诉你怎样用一个更加系统性的方法,从一堆不同的方法中,选取合适的那一个。因此,你更有可能选择一个真正的好方法,能让你花上几天几周,甚至是几个月去进行深入的研究。

11.2 误差分析

在本次课程中,我们将会讲到误差分析(Error Analysis)的概念。这会帮助你更系统地做出决定。如果你准备研究机器学习的东西,或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统,拥有多么复杂的变量;而是构建一个简单的算法,这样你可以很快地实现它。

每当我研究机器学习的问题时,我最多只会花一天的时间,来试图很快的把结果搞出来,即便效果不好。坦白的说,就是根本没有用复杂的系统,但是只是很快的得到的结果。即便运行得不完美,但是也把它运行一遍,最后通过交叉验证来检验数据。一旦做完,你可以画出学习曲线,通过画出学习曲线,以及检验误差,来找出你的算法是否有高偏差和高方差的问题,或者别的问题。在这样分析之后,再来决定用更多的数据训练,或者加入更多的特征变量是否有用。这么做的原因是:这在你刚接触机器学习问题时是一个很好的方法,你并不能提前知道你是否需要复杂的特征变量,或者你是否需要更多的数据,还是别的什么。提前知道你应该做什么,是非常难的,因为你缺少证据,缺少学习曲线。因此,你很难知道你应该把时间花在什么地方来提高算法的表现。但是当你实践一个非常简单即便不完美的方法时,你可以通过画出学习曲线来做出进一步的选择。你可以用这种方式来避免一种电脑编程里的过早优化问题,这种理念是:我们必须用证据来领导我们的决策,怎样分配自己的时间来优化算法,而不是仅仅凭直觉,凭直觉得出的东西一般总是错误的。除了画出学习曲线之外,一件非常有用的事是误差分析,我的意思是说:当我们在构造垃圾邮件分类器时,我会看一看我的交叉验证数据集,然后亲自看一看哪些邮件被算法错误地分类。因此,通过这些被算法错误分类的垃圾邮件与非垃圾邮件,你可以发现某些系统性的规律:什么类型的邮件总是被错误分类。经常地这样做之后,这个过程能启发你构造新的特征变量,或者告诉你:现在这个系统的短处,然后启发你如何去提高它。

构建一个学习算法的推荐方法为:

  1. 从一个简单的能快速实现的算法开始,实现该算法并用交叉验证集数据测试这个算法
  2. 绘制学习曲线,决定是增加更多数据,或者添加更多特征,还是其他选择
  3. 进行误差分析:人工检查交叉验证集中我们算法中产生预测误差的实例,看看这些实例是否有某种系统化的趋势

以我们的垃圾邮件过滤器为例,误差分析要做的既是检验交叉验证集中我们的算法产生错误预测的所有邮件,看:是否能将这些邮件按照类分组。例如医药品垃圾邮件,仿冒品垃圾邮件或者密码窃取邮件等。然后看分类器对哪一组邮件的预测误差最大,并着手优化。

思考怎样能改进分类器。例如,发现是否缺少某些特征,记下这些特征出现的次数。

例如记录下错误拼写出现了多少次,异常的邮件路由情况出现了多少次等等,然后从出现次数最多的情况开始着手优化。

误差分析并不总能帮助我们判断应该采取怎样的行动。有时我们需要尝试不同的模型,然后进行比较,在模型比较时,用数值来判断哪一个模型更好更有效,通常我们是看交叉验证集的误差。

在 我 们 的 垃 圾 邮 件 分 类 器 例 子 中 , 对 于 “ 我 们 是 否 应 该 将discount/discounts/discounted/discounting 处理成同一个词?”如果这样做可以改善我们算法,我们会采用一些截词软件。误差分析不能帮助我们做出这类判断,我们只能尝试采用和不采用截词软件这两种不同方案,然后根据数值检验的结果来判断哪一种更好。

因此,当你在构造学习算法的时候,你总是会去尝试很多新的想法,实现出很多版本的学习算法,如果每一次你实践新想法的时候,你都要手动地检测这些例子,去看看是表现差还是表现好,那么这很难让你做出决定。到底是否使用词干提取,是否区分大小写。但是通过一个量化的数值评估,你可以看看这个数字,误差是变大还是变小了。你可以通过它更快地实践你的新想法,它基本上非常直观地告诉你:你的想法是提高了算法表现,还是让它变得更坏,这会大大提高你实践算法时的速度。所以我强烈推荐在交叉验证集上来实施误差分析,而不是在测试集上。但是,还是有一些人会在测试集上来做误差分析。即使这从数学上讲是不合适的。所以我还是推荐你在交叉验证向量上来做误差分析。

总结一下,当你在研究一个新的机器学习问题时,我总是推荐你实现一个较为简单快速、即便不是那么完美的算法。我几乎从未见过人们这样做。大家经常干的事情是:花费大量的时间在构造算法上,构造他们以为的简单的方法。因此,不要担心你的算法太简单,或者太不完美,而是尽可能快地实现你的算法。当你有了初始的实现之后,它会变成一个非常有力的工具,来帮助你决定下一步的做法。因为我们可以先看看算法造成的错误,通过误差分析,来看看他犯了什么错,然后来决定优化的方式。另一件事是:假设你有了一个快速而不完美的算法实现,又有一个数值的评估数据,这会帮助你尝试新的想法,快速地发现你尝试的这些想法是否能够提高算法的表现,从而你会更快地做出决定,在算法中放弃什么,吸收什么误差分析可以帮助我们系统化地选择该做什么。

11.3 类偏斜的误差度量

在前面的课程中,我提到了误差分析,以及设定误差度量值的重要性。那就是,设定某个实数来评估你的学习算法,并衡量它的表现,有了算法的评估和误差度量值。有一件重要的事情要注意,就是使用一个合适的误差度量值,这有时会对于你的学习算法造成非常微妙的影响,这件重要的事情就是偏斜类(skewed classes)的问题。类偏斜情况表现为我们的训练集中有非常多的同一种类的实例,只有很少或没有其他类的实例。

例如我们希望用算法来预测癌症是否是恶性的,在我们的训练集中,只有 0.5%的实例是恶性肿瘤。假设我们编写一个非学习而来的算法,在所有情况下都预测肿瘤是良性的,那么误差只有 0.5%。然而我们通过训练而得到的神经网络算法却有 1%的误差。这时,误差的大小是不能视为评判算法效果的依据的。

查准率(Precision)和查全率(Recall) 我们将算法预测的结果分成四种情况:

  1. 正确肯定(True Positive,TP):预测为真,实际为真
  2. 正确否定(True Negative,TN):预测为假,实际为假
  3. 错误肯定(False Positive,FP):预测为真,实际为假
  4. 错误否定(False Negative,FN):预测为假,实际为真

则:查准率=TP/(TP+FP)。例,在所有我们预测有恶性肿瘤的病人中,实际上有恶性肿瘤的病人的百分比,越高越好。
查全率=TP/(TP+FN)。例,在所有实际上有恶性肿瘤的病人中,成功预测有恶性肿瘤的病人的百分比,越高越好。

这样,对于我们刚才那个总是预测病人肿瘤为良性的算法,其查全率是 0。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1564517.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

springdoc-openapi-用户界面如何将请求设置为HTTPS

一、问题描述 当我们的服务接口需要通过HTTPS访问时,通过swagger可视化页面请求接口的时候,发起的是HTTP请求,导致请求无法到达后端,影响测试。 二、解决方法 1、将服务的地址添加到配置文件中 swagger:server-list: #本地环境…

ubuntu-server部署hive-part3-安装mysql

参照 https://blog.csdn.net/qq_41946216/article/details/134345137 操作系统版本:ubuntu-server-22.04.3 虚拟机:virtualbox7.0 部署mysql 下载上传 下载地址 https://downloads.mysql.com/archives/community/ 以root用户上传,/usr/loc…

【信贷后台管理系统之axios的二次封装(四)】

文章目录 一、axios的二次封装二、配置后端接口地址三、登录接口api联调四、贷款申请接口api编写联调 一、axios的二次封装 示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。 src下新建utils,新建request.js用来封装axios 控…

Set a Light 3D Studio:探索光影艺术的全新维度mac/win中文版

Set a Light 3D Studio 是一款领先的三维建模和渲染软件,它将设计师、艺术家和摄影师的创意想法转化为生动逼真的三维场景。这款软件以其强大的功能和直观的界面,成为行业内众多专业人士的首 选工具。 set.a.light 3D STUDIO中文版软件获取 在Set a Lig…

unity shader学习练笔日记(一)

1、简单顶点/片元着色器 Shader "Unity Shaders Study/Day One/Simple Shader" {Properties{//声明一个Color类型的属性_Color ("Color Tint", Color) (1.0, 1.0, 1.0, 1.0)}SubShader{Pass{CGPROGRAM#pragma vertex vert#pragma fragment frag//在CG代码…

【Go】十八、管道

文章目录 1、管道2、管道的定义3、管道的关闭4、管道的遍历5、管道 协程6、只读、只写管道7、管道的阻塞8、select 1、管道 channel本质是一个队列,先进先出自身线程安全,多协程访问时,不用加锁,channel本身就是线程安全的一个s…

OpenCV 笔记(28):图像降噪算法——中值滤波、高斯滤波

1. 图像噪声 图像降噪(Image Denoising)是指从图像中去除噪声的过程,目的是提高图像质量,增强图像的视觉效果。 图像噪声是指图像中不希望出现的随机亮度或颜色变化,通常会降低图像的清晰度和可辨识度,以及会降低图像的质量并使图…

DFS:深搜+回溯+剪枝解决排列、子集问题

创作不易&#xff0c;感谢三连支持&#xff01;&#xff01; 一、全排列I . - 力扣&#xff08;LeetCode&#xff09; class Solution { public://全局变量vector<vector<int>> ret;vector<int> path;bool check[6];vector<vector<int>> perm…

【NLP】LLM 和 RAG

在这里&#xff0c;我描述了我在过去几年中关于 RAG 系统如何发展的主要经验。分享 Naive RAG、Advanced RAG 和 Modular RAG 框架之间的区别。总结了高云帆等人发表的一篇出色的RAG 技术调查论文的关键见解。 什么是 RAG 框架&#xff1f; OpenAI的GPT系列、Meta的LLama系列…

InterliJ IDEA基本设置

安装好idea后&#xff0c;将软件打开&#xff0c;可以进行基础设置 1.打开软件&#xff0c;先安装插件-汉化包&#xff08;不推荐&#xff0c;最好使用英文版&#xff09;&#xff0c;本次我们使用汉化版本完成基本设置&#xff0c;后期希望大家适应英文版的开发环境。&#x…

Databend 开源周报第 138 期

Databend 是一款现代云数仓。专为弹性和高效设计&#xff0c;为您的大规模分析需求保驾护航。自由且开源。即刻体验云服务&#xff1a;https://app.databend.cn 。 Whats On In Databend 探索 Databend 本周新进展&#xff0c;遇到更贴近你心意的 Databend 。 支持多表插入 …

一次MySQL事务的旅程:Buffer Pool, Binlog, Redo Log揭秘

MySQL中的各种Buffer和Log以及表空间 MySQL中一次事务涉及了各种Buffer,Log和表空间&#xff0c;主要涉及&#xff1a;Buffer Pool, Binlog, Undo Log, Redo Log以及表空间。 我们来探讨下。 Buffer Pool Buffer Pool主要存放在内存中&#xff0c;它是一个缓存区域&#xf…

论文阅读RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection

文章目录 RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection问题笛卡尔坐标结构图Meta-Kernel Convolution RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection 论文&#xff1a;https://arxiv.org/pdf/2103.10039.pdf 代码&…

Python 与机器学习,在服务器使用过程中,常用的 Linux 命令包括哪些?

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 本博客旨在分享在实际开发过程中&#xff0c;开发者需要了解并熟练运用的 Linux 操作系统常用命令。Linux 作为一种操作系统&#xff0c;与 Windows 或 MacOS 并驾齐驱&#xff0c;尤其在服务器和开发环…

【Node.js从基础到高级运用】二十一、使用child_process模块创建子进程

引言 在Node.js中&#xff0c;child_process模块是一个提供了创建和管理子进程的能力的核心模块。通过使用child_process模块&#xff0c;Node.js可以执行系统命令、运行其他脚本或应用程序&#xff0c;实现与Node.js进程的并行处理。 child_process模块提供了几种创建子进程的…

环信IM集成教程——Web端UIKit快速集成与消息发送

写在前面&#xff1a; 千呼万唤始出来&#xff0c;环信Web端终于出UIKit了&#xff01;&#x1f389;&#x1f389;&#x1f389; 文档地址&#xff1a;https://doc.easemob.com/uikit/chatuikit/web/chatuikit_overview.html 环信单群聊 UIKit 是基于环信即时通讯云 IM SDK 开…

Docker:探索容器化技术,重塑云计算时代应用交付与管理

一&#xff0c;引言 在云计算时代&#xff0c;随着开发者逐步将应用迁移至云端以减轻硬件管理负担&#xff0c;软件配置与环境一致性问题日益凸显。Docker的横空出世&#xff0c;恰好为软件开发者带来了全新的解决方案&#xff0c;它革新了软件的打包、分发和管理方式&#xff…

聚观早报 | 蔚来推出油车置换补贴;iPhone 16 Pro细节曝光

聚观早报每日整理最值得关注的行业重点事件&#xff0c;帮助大家及时了解最新行业动态&#xff0c;每日读报&#xff0c;就读聚观365资讯简报。 整理丨Cutie 4月02日消息 蔚来推出油车置换补贴 iPhone 16 Pro细节曝光 小米SU7创始版第二轮追加开售 OpenAI将在日本设立办事…

OSPF中配置静态路由实验简述

静态路由协议和OSPF&#xff08;开放最短路径优先&#xff09;协议是两种常见的路由协议&#xff0c;它们在路由选择和网络管理方面有一些区别。他们可以共存。 静态路由协议需要手动配置路由表&#xff0c;不会自动适应网络拓扑变化&#xff0c;适用于小型网络或者网络拓扑变化…

图神经网络:处理非欧几里得数据的新视角

目录 1. 引言 2.图数据与图神经网络基础 3.GNN模型详解 4.应用案例 4.1. 社交网络分析 4.2. 化学分子性质预测 5.总结 1. 引言 非欧几里得数据指的是那些不遵循传统欧几里得空间几何规则的数据。在欧几里得空间中&#xff0c;数据点之间的距离和形状可以通过标准的几何度…