论文阅读RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection

news2024/11/22 6:18:33

文章目录

  • RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection
    • 问题
    • 笛卡尔坐标
    • 结构图
    • Meta-Kernel Convolution

RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection

在这里插入图片描述
论文:https://arxiv.org/pdf/2103.10039.pdf
代码:https://github.com/tusen-ai/RangeDet

问题

提出了一个名为RangeDet的新型3D物体检测技术,利用激光雷达数据。
RangeDet的核心在于使用了一种紧凑的表示方法,称为范围视图,与其他常用方法相比,它避免了计算误差。

在这里插入图片描述
根据论文中的讨论,使用范围视图(range view)表示法面临几个挑战:

  1. 尺寸变化问题: 范围视图的一个主要问题是,它继承了传统2D图像检测中的一个典型问题,即物体因距离不同而呈现出的“近大远小”现象,这导致物体尺寸变化多端,给物体检测带来挑战。相比之下,鸟瞰图(Bird’s Eye View, BEV)表示法不会遇到这种问题,但BEV的主要问题在于数据稀疏性和量化损失。

  2. 处理难度: 第二个挑战是不能简单地采用传统的2D卷积网络处理范围图像。因为在范围图像中,每个像素点都有一个明确的距离值,使得相邻像素之间的实际空间距离各不相同。这一特性要求在处理时必须考虑到像素间的这种空间距离差异。

  3. 稠密特征的利用: 尽管范围图像相比点云和BEV视图具有更稠密的特征,这理论上可以使得特征学习更加高效,但如何有效地利用这些稠密特征来提高检测精度是一个问题。稠密特征提供了更丰富的信息,但同时也需要更复杂的方法来正确地解析这些信息,并转化为对物体检测有利的形式。

笛卡尔坐标

在论文中提到,对于一个扫描周期内包含m个光束和n次测量的激光雷达,其一次扫描返回的数据构成了一个m乘以n的矩阵,被称为测距仪图像。此测距图像的每一列对应一个方位角,每一行对应一个倾角,这些角度代表了返回点与激光雷达原点之间的相对垂直和水平位置。测距图像中的像素值不仅包括了相应点的距离(深度)、返回激光脉冲的强度(即强度值)等信息,还可能包含其他辅助信息。在测距图像中,每个像素至少囊括了三个几何参数:测距(r)、方位角(θ)和倾角(φ)。
在这里插入图片描述

结构图

在这里插入图片描述
这个过程针对处理激光雷达的范围图像(Range Image)采用了一种特殊的框架,其中范围图像被看作是一个具有8个通道的2D图像。这些通道分别代表不同的测量和几何特性,包括距离、反射率、伸长率、X、Y、Z坐标、方位角和倾角。这样的多维表示富含了环境的详细信息,对于后续的处理至关重要。

接下来,这个8通道的2D图像会依次经过两个基础块(BasicBlock),这是何凯明等人在ResNet架构中提出的一种结构单元。第一个BasicBlock按照原始设计进行处理,而第二个BasicBlock则采用了一种被称为Meta-Kernel的特殊卷积核,旨在捕获和提炼更丰富的特征信息,生成所谓的特征图(Featuremap)

在第二个BasicBlock中,作者还引入了特征金字塔网络(FPN)的结构,通过不同尺度的特征图上采样和聚合,进一步丰富了特征表示。这一步骤在处理深度学习任务中常见,特别是在需要捕获多尺度信息的视觉任务中。

文章中的另一大创新点是范围条件金字塔分配(Range Conditioned Pyramid Assignment),这个方法根据物体距离的远近,将标签分配到不同尺度的特征图中。这种策略使得模型能够针对不同距离范围的目标,更加精准地处理信息,尤其是对近距离和远距离的目标进行了优化处理。

最后,模型通过四个3x3的卷积层分别构造了分类和回归的头部(head),并采用了Varifocal lossSmooth L1 Loss作为损失函数来优化模型。这些设计和优化策略共同提高了模型对于3D物体检测的性能,特别是在处理复杂的激光雷达数据时的准确性和鲁棒性。

Varifocal loss
在这里插入图片描述
Smooth L1 Loss
在这里插入图片描述
IoU target calculation
在这里插入图片描述

  • 左图: 描述的是一个方法,其中对于模型考虑的每一个点,都将以该点为中心,而且该点的x轴被定义为局部x轴。这种方法简单地将每个点自身作为坐标系的起点,而不考虑任何外部的方向信息或者点的方位角。

  • 右图: 在这个方法中,每个点的方位角方向被定义为局部x轴。这意味着,与左图的方法相比,局部坐标系的定义考虑到了每个点的方位,使得局部x轴的定义更加动态,依赖于每个点相对于全局坐标系的方向。

在模型处理回归任务,特别是在计算回归损失之前,将采用左图的目标方式转换成右图的目标方式。这样的转换是为了利用方位角信息,从而更精确地定义局部坐标系,提高模型对于物体位置和方向的估计精度。

Meta-Kernel Convolution

在这里插入图片描述
在这个过程中,首先通过一个3x3的采样网格,我们确定了九个邻近点的位置,这些位置的坐标被转换成相对于中心点的直角坐标系统下的位置。这一步骤的目的是获取空间上邻近点的布局信息。

接着,使用一个共享的多层感知器_MLP对这些相对坐标进行处理。MLP是一种简单的神经网络,它可以从输入数据中学习复杂的函数映射。在这里,它被用来根据邻近中心的相对坐标生成九个不同的权重向量(w1到w9)。这些权重向量反映了每个邻近点相对于中心点的空间重要性或贡献度。

然后,对应于这九个位置的输入特征向量f1到f9)被采样。这些特征向量可能包含了那些位置上的物体的形状、纹理等信息。

最后,通过一个特殊的操作,将这九个邻域的输出(oi)组合起来。这通常通过连接(concatenating)这些输出并应用一个1x1的卷积来实现。1x1卷积在这里的作用是将来自不同通道和不同采样位置的信息汇总,生成一个输出特征向量。这个输出特征向量综合了周围邻域的信息。

总结来说,这个过程通过分析邻近点的空间布局和特征信息,以及它们相对于中心点的重要性,有效地生成了融合了局部信息的输出特征向量。这种方法可以增强模型对于空间信息的理解和利用,从而提高其性能。

参考

https://zhuanlan.zhihu.com/p/526985263

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1564494.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python 与机器学习,在服务器使用过程中,常用的 Linux 命令包括哪些?

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 本博客旨在分享在实际开发过程中,开发者需要了解并熟练运用的 Linux 操作系统常用命令。Linux 作为一种操作系统,与 Windows 或 MacOS 并驾齐驱,尤其在服务器和开发环…

【Node.js从基础到高级运用】二十一、使用child_process模块创建子进程

引言 在Node.js中,child_process模块是一个提供了创建和管理子进程的能力的核心模块。通过使用child_process模块,Node.js可以执行系统命令、运行其他脚本或应用程序,实现与Node.js进程的并行处理。 child_process模块提供了几种创建子进程的…

环信IM集成教程——Web端UIKit快速集成与消息发送

写在前面: 千呼万唤始出来,环信Web端终于出UIKit了!🎉🎉🎉 文档地址:https://doc.easemob.com/uikit/chatuikit/web/chatuikit_overview.html 环信单群聊 UIKit 是基于环信即时通讯云 IM SDK 开…

Docker:探索容器化技术,重塑云计算时代应用交付与管理

一,引言 在云计算时代,随着开发者逐步将应用迁移至云端以减轻硬件管理负担,软件配置与环境一致性问题日益凸显。Docker的横空出世,恰好为软件开发者带来了全新的解决方案,它革新了软件的打包、分发和管理方式&#xff…

聚观早报 | 蔚来推出油车置换补贴;iPhone 16 Pro细节曝光

聚观早报每日整理最值得关注的行业重点事件,帮助大家及时了解最新行业动态,每日读报,就读聚观365资讯简报。 整理丨Cutie 4月02日消息 蔚来推出油车置换补贴 iPhone 16 Pro细节曝光 小米SU7创始版第二轮追加开售 OpenAI将在日本设立办事…

OSPF中配置静态路由实验简述

静态路由协议和OSPF(开放最短路径优先)协议是两种常见的路由协议,它们在路由选择和网络管理方面有一些区别。他们可以共存。 静态路由协议需要手动配置路由表,不会自动适应网络拓扑变化,适用于小型网络或者网络拓扑变化…

图神经网络:处理非欧几里得数据的新视角

目录 1. 引言 2.图数据与图神经网络基础 3.GNN模型详解 4.应用案例 4.1. 社交网络分析 4.2. 化学分子性质预测 5.总结 1. 引言 非欧几里得数据指的是那些不遵循传统欧几里得空间几何规则的数据。在欧几里得空间中,数据点之间的距离和形状可以通过标准的几何度…

书生·浦语大模型(学习笔记-1)

一、大模型的发展 模型与通用人工智能(AGI),大模型通常被视为发展通用人工智能的重要途径。AI研究从专用模型向通用模型转变,在过去的一二十年中,研究重点在于针对特定任务的专用模型。专用模型的已经再多个领域取得显…

试过了,ChatGPT确实不用注册就可以使用了!

看到官网说不用登录也可以直接使用ChatGPT 我们来试一下 直接打开官网 默认是直接进入了chatgpt3.5的聊天界面 之前是默认进的登录页面 聊一下试试 直接回复了,目前属于未登录状态,挺好! 来试下ChatGPT4 跳转到了登录页面 目前来看gpt4还…

时序预测 | Matlab实现CPO-LSTM【24年新算法】冠豪猪优化长短期记忆神经网络时间序列预测

时序预测 | Matlab实现CPO-LSTM【24年新算法】冠豪猪优化长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab实现CPO-LSTM【24年新算法】冠豪猪优化长短期记忆神经网络时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-LSTM【24年新算法】…

【Java+Springboot】----- 通过Idea快速创建SpringBoot项目操作方法

一、第一步: 点击选择【File】->【New】-> 【Project】 最后弹出[new Project]界面。 二、第二步: 1. 选择【Spring Initializr】 2. 然后选择【Project SDK】的版本 3. 然后 Choose Initializr Service URL 选择默认(Default&#x…

OpenCV项目实战-深度学习去阴影-图像去阴影

往期热门博客项目回顾: 计算机视觉项目大集合 改进的yolo目标检测-测距测速 路径规划算法 图像去雨去雾目标检测测距项目 交通标志识别项目 yolo系列-重磅yolov9界面-最新的yolo 姿态识别-3d姿态识别 深度学习小白学习路线 //正文开始! 图…

Python+requests+Pytest+logging+allure+pymysql框架详解

一、框架目录结构 1)tools目录用来放公共方法存储,如发送接口以及读取测试数据的方法,响应断言 数据库断言 前置sql等方法;2)datas目录用例存储接口用例的测试数据,我是用excel来存储的数据,文件数据 图片数据等;3)testcases目录用来存放测试用例,一个python文件对应…

linux删除 buff/cache缓存

1.查看当前内存占用 free -h如图,缓存占用了将近9G,接下来进行清理 释放页缓存 echo 1 > /proc/sys/vm/drop_caches释放dentries和inodes echo 2 > /proc/sys/vm/drop_caches释放所有缓存 echo 3 > /proc/sys/vm/drop_caches再次查看&#…

uniapp创建opendb-city-china Schema文件后,如何导入城市的数据?

1.点击opendb-city-china后面的详情,进入到gitee代码仓库 2.下载如下图所示的data.json文件 3.将本地创建的opendb-city-china.schema.json上传到云端 4.点击导入json 如果直接将data.json导入会报错,如下图所示: 5.将data.json本来的数组对象&#…

物联网行业中,我们如何选择数据库?

在当今数字化潮流中,我们面对的不仅是海量数据,更是时间的涟漪。从生产线的传感器到金融市场的交易记录,时间序列数据成为了理解事物演变和趋势的关键。在面对这样庞大而动态的数据流时,我们需要深入了解一种强大的工具——时序数…

Flutter 开发学习笔记(3):第三方UI库的引入

文章目录 前言初始化程序Icon导入如何导入 Toast消息提示框引入简单封装简单使用 Charts图表导入新建pages文件夹存放page简单代码实现效果 总结 前言 Flutter已经发布了有10年了,生态也算比较完善了。用于安卓程序开发应该是非常的方便。我们这里就接入一些简单的…

经营数据分析怎么做?企业月度经营分析的思路与方法分享

企业经营分析是企业成功的关键之一,无论企业规模大小,都需要通过系统性的数据分析来指导经营决策。这一过程不仅仅是对集团大局数据的简单处理,还包括对市场、客户、生产、财务、运营、项目进展、人效等多个方面数据的全面审视。通过深入分析…

ubuntu-server部署hive-part4-部署hive

参照 https://blog.csdn.net/qq_41946216/article/details/134345137 操作系统版本:ubuntu-server-22.04.3 虚拟机:virtualbox7.0 部署hive 下载上传 下载地址 http://archive.apache.org/dist/hive/ apache-hive-3.1.3-bin.tar.gz 以root用户上传至…

Redis缓存设计与性能优化【缓存和数据库不一致问题,解决方案:1.加过期时间这样可以一段时间后自动刷新 2.分布式的读写锁】

Redis缓存设计与性能优化 缓存与数据库双写不一致 缓存与数据库双写不一致 在大并发下,同时操作数据库与缓存会存在数据不一致性问题 1、双写不一致情况 2、读写并发不一致 解决方案: 1、对于并发几率很小的数据(如个人维度的订单数据、用户数据等)&a…