Hive详解(5)

news2024/11/26 13:46:26

Hive

窗口函数

案例

  1. 需求:连续三天登陆的用户数据

  2. 步骤:

    -- 建表
    create table logins (
        username string,
        log_date string
    ) row format delimited fields terminated by ' ';
    -- 加载数据
    load data local inpath '/opt/hive_data/login' into table logins;
    -- 查询数据
    select *
    from logins tablesample (5 rows);
    -- 按用户分组,将登陆日期进行排序
    -- over(partition by xxx order by xxx)
    -- 获取每一条数据两行之前的数据
    select *, 
           lag(log_date, 2) over (partition by username order by log_date) as 2d_log_date
    from logins;
    -- 获取连续三天登录的数据
    select distinct username
    from (
        select *, 
               lag(log_date, 2) over (partition by username order by log_date) as 2d_log_date
        from logins
    ) t where datediff(log_date, 2d_log_date) = 2;

其他操作

join

  1. 同MySQL类似,在Hive中也提供了表之间的join,包含:内连接inner join,左连接left join,右连接right join和全外连接full outer join以及极少使用的笛卡尔积

  2. 除此之外,Hive还提供了特殊的连接:left semi join。当a left semi join b,表示获取a表哪些数据在b表中出现过

  3. 案例

    -- 建表
    drop table if exists orders;
    create table orders (
        order_id   int,
        order_date string,
        product_id int,
        number     int
    ) row format delimited fields terminated by ' ';
    drop table if exists products;
    create table products (
        product_id   int,
        product_name string,
        price        double
    ) row format delimited fields terminated by ' ';
    -- 加载数据
    load data local inpath '/opt/hive_data/orders' into table orders;
    load data local inpath '/opt/hive_data/products' into table products;
    select *
    from orders;
    select *
    from products;
    -- 需求一:获取每天卖了多少钱
    select o.order_date,
           sum(o.number * p.price)
    from orders o left join products p 
        on o.product_id = p.product_id
    group by o.order_date;
    -- 需求二:获取哪些商品被卖出去过
    -- 获取商品表中的哪些数据在订单表中出现过
    -- 方式一:left semi join
    select *
    from products p left semi join orders o
                  on p.product_id = o.product_id;
    -- 方式二:
    select * from products
    where product_id in (select product_id from orders);

排序

  1. 不同于MySQL的地方在于,在Hive中,提供了两种排序方式

    1. order by:全局排序。在排序的时候,会忽略掉ReduceTask的数量,对所有的数据进行整体的排序

    2. sort by:局部排序。这种方式,在每一个ReduceTask内部排序。如果没有指定,那么会根据排序字段,计算字段的哈希码,然后将字段分发到对应到ReduceTask上来进行排序

  2. 案例

    1. 原始数据

      2 henry 84
      3 jack 76
      1 david 92
      1 bruce 78
      1 balley 77
      2 hack 85
      1 tom 79
      3 peter 96
      2 eden 92
      1 mary 85
      3 pard 61
      3 charles 60
      2 danny 94
      3 cindy 75
    2. 案例

      -- 建表
      drop table if exists scores;
      create table scores (
          class int,
          name  string,
          score int
      ) row format delimited fields terminated by ' ';
      -- 加载数据
      load data local inpath '/opt/hive_data/scores' into table scores;
      -- 查询数据
      select *
      from scores tablesample (5 rows);
      -- order by
      insert overwrite local directory '/opt/hive_demo/order_by1'
          row format delimited fields terminated by '\t'
      select * from scores order by score;
      -- sort by
      insert overwrite local directory '/opt/hive_demo/sort_by1'
          row format delimited fields terminated by '\t'
      select * from scores sort by score;
      -- Hive中的SQL默认会转化为MapReduce任务来执行
      -- 在MapReduce中,如果不指定,默认只有1个ReduceTask
      -- 因此也只产生1个结果文件
      -- 指定ReduceTask的个数
      set mapreduce.job.reduces = 3;
      insert overwrite local directory '/opt/hive_demo/order_by2'
          row format delimited fields terminated by '\t'
      select * from scores order by score;
      insert overwrite local directory '/opt/hive_demo/sort_by2'
          row format delimited fields terminated by '\t'
      select * from scores sort by score;
      -- 在实际过程中,其实极少单独使用sort by
      -- sort by一般是结合distribute by来使用
      -- 案例:将每一个班的学生按照成绩降序排序
      insert overwrite local directory '/opt/hive_demo/distribute_by'
          row format delimited fields terminated by '\t'
      select * from scores distribute by class sort by score desc;
  3. 如果distribute bysort by的字段一致,那么可以省略为cluster by。注意,cluster by默认只能升序不能降序排序

beeline和JDBC

  1. JDBC(Java Database Connection):类似于MySQL,Hive也提供了JDBC操作,代码和MySQL的JDBC操作一模一样

    package com.fesco.jdbc;
    ​
    import java.sql.*;
    ​
    public class HiveJDBCDemo {
    ​
        public static void main(String[] args) throws ClassNotFoundException, SQLException {
    ​
            // 注册驱动
            Class.forName("org.apache.hive.jdbc.HiveDriver");
            // 获取连接
            // Hive对外提供的连接端口是10000
            Connection connection = DriverManager.getConnection("jdbc:hive2://101.36.69.196:31177/demo", "root", "root");
            // 获取表述
            Statement statement = connection.createStatement();
            // 执行SQL
            ResultSet resultSet = statement.executeQuery("select * from products");
            // 遍历结果集
            while(resultSet.next()){
                System.out.println(resultSet.getString("product_name"));
            }
            // 关闭
            resultSet.close();
            statement.close();
            connection.close();
    ​
        }
    ​
    }
  2. 利用Datagrip连接Hive,实际上就是用JDBC的方式连接的Hive

  3. Hive提供了原生的远程连接方式:beeline

    beeline -u jdbc:hive2://hadoop01:10000/demo -n root

    -u表示url,连接地址;-n表示name,用户名

  4. 注意:如果想要使用JDBC的方式连接Hive,那么必须开启hiveserver2服务!!!

SerDe

  1. SerDe(Serializar-Deserializar):是Hive中提供的一套用于进行序列化和反序列化操作的机制

  2. 可以利用SerDe来解决数据的格式问题

  3. 案例

    -- 不使用SerDe
    -- 1. 建表管理原始数据
    create table logs_tmp (
        log string
    );
    load data local inpath '/opt/hive_data/logs' into table logs_tmp;
    select * from logs_tmp tablesample (5 rows);
    -- 2. 建表
    create table logs (
        user_ip     string, -- 用户ip
        log_date    string, -- 访问日期和时间
        timezone    string, -- 时区
        request_way string, -- 请求方式
        resources   string, -- 请求资源
        protocol    string, -- 请求协议
        state_id    int     -- 状态码
    ) row format delimited fields terminated by '\t';
    -- 3. 先将数据替换为规则形式,然后利用split拆分
    insert into table logs
    select arr[0], arr[1], arr[2], arr[3], arr[4], arr[5], cast(arr[6] as int)
    from (
       select split(regexp_replace(log, '(.*) \-\- \\[(.*) (.*)\\] \"(.*) (.*) (.*)\" (.*) \-', '$1 $2 $3 $4 $5 $6 $7'), ' ') arr from logs_tmp
    ) t;
    -- 查询数据
    select * from logs;
    -- 使用SerDe
    -- 建表
    drop table if exists logs;
    create table logs (
        user_ip     string, -- 用户ip
        log_date    string, -- 访问日期和时间
        timezone    string, -- 时区
        request_way string, -- 请求方式
        resources   string, -- 请求资源
        protocol    string, -- 请求协议
        state_id    int     -- 状态码
    ) row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe'
      with serdeproperties (
          'input.regex'='(.*) \-\- \\[(.*) (.*)\\] \"(.*) (.*) (.*)\" (.*) \-'
      ) stored as textfile ;
    load data local inpath '/opt/hive_data/logs' into table logs;
    select * from logs;

视图(view)

  1. 视图是对原表中部分字段进行抽取,可以看作是原表的子表,但是本质上是一个虚拟表

  2. 当不需要表中所有的字段,而只需要这个表中的部分字段的时候,那么此时就可以使用视图来对数据进行封装

  3. 视图只能看不能修改!

  4. 视图的优点

    1. 简单。使用视图的时候,完全不需要关心视图背后依赖的表结构是否发生变化,是否产生关联。对于用户而言,视图就是已经符合过滤条件的结果集

    2. 安全。用户只被允许访问视图中已经过滤好的数据,并且视图中的数据只能查不能改,此时不会影响基表的数据

    3. 数据独立。一旦视图创建,那么此时基表发生结构变化,不会影响视图的操作

  5. Hive中,在定义视图的时候,需要封装一个select语句。此时,被封装的这个select在创建视图的时候并不会执行;而是会在第一次查询视图的时候才会触发封装的select执行

  6. 视图分为虚拟视图(只存储在内存中,可以认为是一个虚拟表)和物化视图(会落地到磁盘上,此时就是一个真正的子表)。需要注意的是,Hive只支持虚拟视图不支持物化视图

  7. 案例

    -- 创建视图
    create view logs_view as select user_ip, log_date, resources from logs order by log_date;
    -- 查询视图
    select * from logs_view;
    -- 删除视图
    drop view logs_view;

Hive存储

概述

  1. Hive中的数据最终是以文件形式落地到HDFS上,目前Hive官方原生的文件格式有6种:textfileRCFileorcparquetavrosequencefile

    1. avrosequencefile将文件以序列形式来存储(序列化文件)

    2. 如果不指定,那么HDFS默认将文件以textfile格式存储

    3. textfileavrosequencefile是行存储格式,RCFileorcparquet是列存储格式

    4. textfile不支持修改(delete和update),但是列存储格式都支持delete和update操作,效率非常低

textfile

  1. Hive中的文件格式默认就是textfile

  2. 默认情况下,textfile不对数据进行压缩,因此占用磁盘空间相对较大;在进行数据分析的时候,开销相对也较大

  3. textfile支持Gzip和Bzip2的压缩格式

orc

  1. orc(Optimized Row Columnar,优化的行列格式),是Hive0.11版本引入的一种文件格式,是基于RCFile格式机型优化,本身是以存储形式来存放数据

  2. 每一个ORC文件,由1个File Footer、1个Postscript以及1到多个Stripe来组成

  3. Stripe:用于存储数据的。默认情况下,每一个Stripe的大小是250M。Stripe由三部分组成

    1. Index Data:索引数据。默认每隔10000行数据形成一次索引,会记录每一列的最小值、最大值、以及每一列中的行索引

    2. Row Data:行数据。在存储数据的时候,不是将整个表的列来进行拆分,而是先截取部分行,然后将每一行数据的字段来进行拆分。因为同一列中的字段类型是一致的,所以可以给不同的列来指定的压缩机制进行更好的压缩

    3. Stripe Footer:记录每一列的数据类型、每一列的字节长度

  4. File Footer:记录每一个Stripe中包含的行数以及每一列的数据类型。初次之外,File Footer还可以记录每一列的聚合信息,例如sum、max等

  5. Postscript:记录了整个文件的信息,例如文件是否压缩,压缩编码是什么,以及File Footer在orc文件中的从存储位置

  6. 如果需要在ORC文件中查询某一条数据:

    1. 首先从文件末尾读取Postscript,从Postscript中获取到File Footer在文件中的存储位置

    2. 然后读取File Footer,从File Footer中获取这条数据所在的Stripe的位置

    3. 读取Stripe中的Index Data,锁定这条数据对应的索引位置,最后再通过Row Data获取到这条数据

parquet格式

  1. parquet格式是从Hive0.10版本开始提供的一种二进制的文件格式,所以不能直接读取

  2. 每一个parquet文件中,包含了四部分

    1. Magic Code:魔数,用于确保当前的文件是一个parquet文件

    2. Footer Length:记录元数据的大小。通过这个值以及parquet文件的大小,可以计算出元数据在parquet文件中的偏移量

    3. Metastore:元数据存储,记录了当前parquet文件的文件信息,以及文件大小、Row Group的数量

    4. Row Group:行组

      1. 将文件从行方向上进行切分,每一部分就是一个Row Group。默认情况下,Row Group和Block是等大的

      2. 每一个行组中,又包含了1个到多个Column Chunk(列块)。每一列对应了一个列块。因为同一个列块中的数据类型相同,所以可以给不同的列块指定不同的压缩编码

      3. 每一个列块中包含了一个到多个Page(页)。Page是parquet文件中数据存储的最小单位

      4. Page分为三种

        1. 数据页:存储数据

        2. 字典页:存储编码信息

        3. 索引页:记录存储的数据在文件中的偏移量

      5. 需要注意的是,Hive提供的原生的parquet文件不支持索引页

  3. parquet格式支持LZO和snappy压缩

Hive压缩

  1. Hive支持对结果文件进行压缩。其中,经常对orc和parquet文件进行压缩

  2. orc文件压缩可以通过属性orc.compress来配置压缩,可以使用的值:NONEZLIBSNAPPYNONE表示不压缩

    create table orc_test (
        id   int,
        name string,
        age  int
    ) row format delimited fields terminated by ' '
        stored as orc; -- 以orc格式来存储
    insert into table orc_test values (1, 'Amy', 15);
    ​
    create table orc_zlib (
        id   int,
        name string,
        age  int
    ) row format delimited fields terminated by ' '
        stored as orc
        tblproperties ('orc.compress' = 'ZLIB');
    insert into table orc_zlib values (1, 'Amy', 15);
    ​
    create table orc_snappy (
        id   int,
        name string,
        age  int
    ) row format delimited fields terminated by ' '
        stored as orc
        tblproperties ("orc.compress" = "SNAPPY");
    insert into table orc_snappy values (1, 'Amy', 15);
  3. parquet文件压缩可以通过属性parquet.compression进行配置。可以使用的值:NONESNAPPY

    create table parquet_test (
        id   int,
        name string,
        age  int
    ) row format delimited fields terminated by ' '
        stored as parquet; -- 以parquet形式来存储数据
    insert into table parquet_test values (1, 'May', 15);
    ​
    create table parquet_snappy (
        id   int,
        name string,
        age  int
    ) row format delimited fields terminated by ' '
        stored as parquet
        tblproperties ("parquet.compression" = "SNAPPY");
    insert into table parquet_snappy values (1, 'May', 15);

Hive结构和优化

结构

  1. Client Interface:客户端端口,包含CLI(Command-line,命令行)和JDBC两种方式

  2. 客户端连接Client Interface,提交要执行的SQL。这个SQL会被提交给Driver(驱动器)

  3. Driver包含了4部分

    1. SQL Parser:SQL解析器,SQL提交给Driver之后,会先有SQL Parser进行解析,在解析的时候,先去检查SQL的语法是否正确,会连接元数据库查询/修改元数据,然后将SQL转化为抽象语法树(AST)

    2. Physical Plan:物理计划。SQL Parser将SQL解析成AST之后,将AST交给Physical PLAN,将AST编译成具体的执行逻辑

    3. Query Optimizer:查询优化器。Physical PLAN将执行逻辑交给Query Optimizer进行优化

    4. Execution:执行器。负责将优化之后的执行逻辑转化成具体的执行任务,例如将执行逻辑转化为MapReduce程序

优化

  1. 列裁剪或者分区裁剪。在实际生产环境中,经常需要处理大量的数据,那么此时使用select * from x的形式,会对整个表进行扫描,从而导致查询效率变低。因此在实际过程中,最好执行列或者指定分区进行查询;如果需要进行按行的查询,那么最好限制查询的行数,例如使用limit n或者tablesample(n rows)

  2. group by的优化。在进行group by的时候,那么此时相同的键对应的值会被分到一组,会被分发到某一个ReduceTask来处理这一组数据。如果某一个键对应的值比较多,那么此时处理这个键的ReduceTask的任务量就相对较大,此时就产生了数据倾斜。针对这个问题,提供了两种优化方案

    1. map combine:map端的聚合,就是将数据在MapTask处先进行一次聚合,然后再将聚合后的结果发送给ReduceTask处理

      -- 开启聚合机制
      set hive.map.aggr = true;
      -- 指定聚合的值
      set hive.groupby.mapaggr.checkinterval = 10000;
    2. 二阶段聚合(负载均衡方式):将Hive的执行过程拆分成2个MapReduce任务执行。第一个MapReduce中,先将数据打散之后进行聚合,第二个MapReduce中,再根据实际的要求进行聚合

      -- 开启二阶段聚合
      set hive.groupby.skewindata = true;
  3. CBO(Cost based Optimizer,基于花费的优化器)

    1. CBO是从Hive0.10开始添加的一种优化机制,从Hive1.1.0开始,CBO优化默认是开启的,可以通过属性hive.cbo.enable来调节

    2. CBO遵循的原则:谁的执行代价最小就是最好的执行计划

  4. 谓词下推。在保证结果不发生改变的前提下,尽量将where条件(谓词)提前执行,来减少下游处理的数据量,这个过程就称之为谓词下推

    -- 开启谓词下推
    -- ppd是PredicatePushDown,预测/谓词下推
    set hive.optimize.ppd = true;
  5. map join。当小表和大表进行join的时候, 将小表放入内存中分发给每一个MapTask,MapTask在处理数据时候就直接从内存中获取数据,此时join过程在Map端完成,从而减少了最终交给ReduceTask的数据量

    -- 默认是25M
    set hive.mapjoin.smalltable.filesize = 25000000;
  6. SMB join

    1. SMB join(sort merge bucket join):基于分桶机制和map join的前提下实现的一种join方式,用于解决大表和大表之间的join问题

    2. 当大表和大表进行join的时候,可以考虑先将大表的数据进行分桶,每一个桶中都只包含部分数据,此时每一个桶就相当于是一个小表,在此时join的时候,就是小表和大表join,那么可以进行map join。本质上就是"分而治之"的思想

    3. SMB join的条件:A join B

      1. A表和B表都必须分桶,并且B表的桶数必须是A表桶数的整数倍。例如A分了4个桶,那么B表的桶数必须是4n

      2. 分桶字段和join字段必须一致。A join B on a.id = b.id,那么此时A表和B表必须以id字段来进行分桶

  7. 启用严格模式

    1. hive.strict.checks.no.partition.filter:默认为false,如果设置为true,那么在查询分区表的时候,必须以分区作为查询条件

    2. hive.strict.checks.orderby.no.limit:默认为false,如果设置为true,那么进行order by的时候,必须添加limit语句

    3. hive.strict.checks.cartesian.product:默认为false,如果设置为true,那么严禁进行笛卡尔积

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1561177.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Java】反射简介,利用反射打印一个类当中的构造函数,方法和属性。

📝个人主页:哈__ 期待您的关注 我想要通过反射来打印如下效果的类信息。 Student类如下代码所示。 package com.my.reflect;public class Student {public String name;public int age;public Student(){}public Student(String name, int age) {this…

探索组合总和问题(力扣39,40,216)

文章目录 题目前知LinkedList和ArryayList 组合总和I一、思路二、解题方法三、Code 组合总和II一、思路二、解题方法三、Code 组合总和III一、思路二、解题方法三、Code 总结 先看完上一期组合问题再看这一期更加容易理解喔🤯 在算法和编程的世界中,组合…

走向国际:区块链行业项目海外市场宣传与运营攻略

随着区块链技术的不断发展和应用,越来越多的区块链项目开始将目光投向海外市场。在全球范围内寻找用户和投资者,扩大品牌知名度,是许多区块链项目的共同目标。然而,要成功进军海外市场,并不是一件容易的事情。本文将深…

Vscode运行python

按住 xtrlshiftp,会出现下面的界面: 然后选择第一个选项,会出现如下的界面: 选择某个环境后就可以使用了。可以右键,如下所示: 就可以运行python程序了

如何在Ubuntu系统部署Z-blog博客结合cpolar实现无公网IP访问本地网站

文章目录 1. 前言2. Z-blog网站搭建2.1 XAMPP环境设置2.2 Z-blog安装2.3 Z-blog网页测试2.4 Cpolar安装和注册 3. 本地网页发布3.1. Cpolar云端设置3.2 Cpolar本地设置 4. 公网访问测试5. 结语 1. 前言 想要成为一个合格的技术宅或程序员,自己搭建网站制作网页是绕…

基于WEB的花卉养殖知识平台

基于WEB的花卉养殖知识平台的设计与实现 摘要 随着人们生活水平及生活质量要求的日益提升,花卉也成为了人们日常生活的调味剂,同时对于花卉的养殖及养护不再是老年人的专利,很多年轻人也在通过花卉的养护来舒缓工作压力,同时通过…

Centos7.X服务器搭建VOS系统的REC录音转换MP3,并支持外呼系统wav转换MP3

由于有的公司客户需要自己下载录音或做话务质检等工作需要,需要从VOS系统中把录音下载到其它服务器使用,但是VOS录音格式是REC格式的,就算下载下来了也无法直接播放,因此我们需要搭建一台转换MP3的服务器来完成需求! 外…

EfficientSAM 项目排坑

EfficientSAM 项目排坑 任务过程记录创建环境运行示例 任务 跑通这个项目代码 过程记录 创建环境 readme里没有说具体怎么配置环境,所以可能对我来说还挺困难的。 现把项目git下来: git clone https://github.com/yformer/EfficientSAM.git cd Effi…

插值字符串格式化代码中的感叹号(Python)

在csdn上读到,插值字符串格式化代码中有“!”,进行了一番探究,了解到其中的一点“隐秘”,在此共享。🤪 (笔记模板由python脚本于2024年03月31日 09:27:59创建,本篇笔记适合对Python字符串格式化有一定认知的…

【C语言】联合体、枚举: 联合体与结构体区别,枚举的优点

目录 1、联合体 1.1、什么是联合体 1.2、联合体的声明 1.3、联合体的特点 1.4、联合体与结构体区别 1.5、联合体的大小 2、枚举 2.1、枚举类型的声明 2.2、枚举类型的优点 3、三种自定义类型:结构体、联合体、枚举 正文 1、联合体 1.1、什么是联合体 联…

OpenHarmony实战:命令行工具hdc安装应用指南

一、工具概述 hdc(OpenHarmony Device Connector)是为开发人员提供的用于设备连接调试的命令行工具,该工具需支持部署在 Windows/Linux/Mac 等系统上与 OpenHarmony 设备(或模拟器)进行连接调试通信。 简言之&#xf…

开启 Sora 知识免费课,探索文生视频大模型

4 月 1 日,中国网游先锋,火石控股董事长、风险投资人吴渔夫开启了“跟我学 Sora 知识”的免费课程。他表示,讲述的知识涵盖了 Sora 的产品、技术及未来走向。自 2 月 16 日 Sora 文生视频模型问世以来,我已查阅众多的 Sora 中英文…

记一次对Codis的无知引起的逻辑变更

先提前说明,对Codis的无知是因为Codis不支持一些Redis的命令,而这次的逻辑变更,就是因为使用了PUBLISH,而Codis又不支持PUBLISH导致的。 1. 前言 前段时间的一次需求中,因为设计到多个服务的注册问题,在项…

docker容器添加新端口映射的步骤及`wsl$`目录的作用

在Docker容器已经创建后,需要添加新的端口映射,即对已经存在的Docker容器添加新的端口映射,可以通过以下步骤来添加,即通过修改配置文件的方法。 如何新增端口映射? 查找容器的hash值 docker inspect [容器id或名称…

机器学习在智能音箱中的应用探索与实践:让声音更懂你

🧑 作者简介:阿里巴巴嵌入式技术专家,深耕嵌入式人工智能领域,具备多年的嵌入式硬件产品研发管理经验。 📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向的学习指导…

椋鸟数据结构笔记#5:树、二叉树基础

文章目录 树树的相关概念树的表示 二叉树基础二叉树分类满二叉树完全二叉树 二叉树的性质二叉树的存储结构顺序存储链式存储 萌新的学习笔记,写错了恳请斧正。 树 树是一种非线性的数据结构,它是由 n 个节点组成的一个具有层次关系的数据集合。其大概结…

算法学习——LeetCode力扣补充篇3(143. 重排链表、141. 环形链表、205. 同构字符串、1002. 查找共用字符、925. 长按键入)

算法学习——LeetCode力扣补充篇3 143. 重排链表 143. 重排链表 - 力扣(LeetCode) 描述 给定一个单链表 L 的头节点 head ,单链表 L 表示为: L0 → L1 → … → Ln - 1 → Ln 请将其重新排列后变为: L0 → Ln → …

题目:小蓝的神秘行囊(蓝桥OJ 3937)

问题描述&#xff1a; 解题思路&#xff1a; 二维优化01背包模板题。与一维优化01背包不同在于多增加一维。 代码&#xff1a; #include <bits/stdc.h> using namespace std;const int N 1e2 9; int dp[N][N]; //二维的01背包&#xff0c;dp[i][j]&#xff1a;i是体…

【SpringCloud】一文详谈Nacos

&#x1f3e1;浩泽学编程&#xff1a;个人主页 &#x1f525; 推荐专栏&#xff1a;《深入浅出SpringBoot》《java对AI的调用开发》 《RabbitMQ》《Spring》《SpringMVC》《项目实战》 &#x1f6f8;学无止境&#xff0c;不骄不躁&#xff0c;知行合一 文章目录 …

metasploit使用及内网笔记

1 基本操作 Metasploit就是一个漏洞框架。它的全称叫做The Metasploit Framework&#xff0c;简称叫做MSF。Metasploit作为全球最受欢迎的工具&#xff0c;不仅仅是因为它的方便性和强大性&#xff0c;更重要的是它的框架。它允许使用者开发自己的漏洞脚本&#xff0c;从而进行…