深度学习pytorch——经典卷积网络之ResNet(持续更新)

news2025/1/16 18:52:15

错误率前五的神经网络(图-1):

图-1

可以很直观的看到,随着层数的增加Error也在逐渐降低,因此深度是非常重要的,但是学习更好的网络模型和堆叠层数一样简单吗?通过实现表明(图-2),并不是如此,会出现梯度消失和梯度爆炸的现象,甚至比堆叠之前的训练效果更差,这种现象被称为梯度退化。 

图-2

如何保证梯度不退化,即随着堆叠层数的增加,训练模型不会比堆叠之前还要差?深度残差网络(Deep Residual Learning,ResNet)的提出很好的解决了这一问题,并且不仅没有增加额外的参数,也没有增加计算的复杂度。

ResNet在普通网络的基础上插入了短路(shortcut connection)(图-3),将这个网络变成了ResNet。

图-3

以上的叙述知识思想层面的,将思想转化为实操,离不开背后的数学原理(图-4)。

图-4

我们将最后的输出设置为 H(x)  ,我们将堆叠的非线性层去拟合F(x) = H(x) - x ,原来的映射就变成了F(x) + x (F(x)必须和x的维度相同,如果不相同可是使用1*1卷积或者增加padding)。相当于我们在一些非线性对叠层之间插入了一个短路(shortcut connection),如果堆叠之后的模型的训练Error比之前还要差,就会直接走短路通道,如果堆叠之后的模型比之前好了,就进行堆叠,至于在几个堆叠层之间插入一个短路,这取决于训练的参数。

使用ResNet模型并不需要建立新的求解器,我们可以直接使用公共库,代码演示如下:

class ResBlk(nn.Module):
    """
    resnet block
    """

    def __init__(self, ch_in, ch_out):
        """
        :param ch_in:
        :param ch_out:
        """
        super(ResBlk, self).__init__()

        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)

        #如果shortcut的输入和输出层的channel不一样,可以用一个1*1的卷积让他们变成一样

        self.extra = nn.Sequential()
        if ch_out != ch_in:
            # [b, ch_in, h, w] => [b, ch_out, h, w]
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1),
                nn.BatchNorm2d(ch_out)
            )


    def forward(self, x):
        """
        :param x: [b, ch, h, w]
        :return:
        """
        out = F.relu(self.bn1(self.conv1(x)))  #激活函数,也可以在上面的网络(第25行)写nn.ReLU
        out = self.bn2(self.conv2(out))
        # short cut.
        # extra module: [b, ch_in, h, w] => [b, ch_out, h, w]
        # element-wise add:
        out = self.extra(x) + out

        return out

这个代码来自于课时72 ResNet与DenseNet-2_哔哩哔哩_bilibili 

中间关于这个思想的解释来自于我自己对Deep Residual Learning for Image Recognition 论文的理解,如果有什么问题,欢迎各位大佬指正,我将会感激不尽。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1557784.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《自动机理论、语言和计算导论》阅读笔记:p49-p67

《自动机理论、语言和计算导论》学习第4天,p49-p67总结,总计19页。 一、技术总结 1.Deterministic Finite Automata(DFA) vs Nondeterministic Finite Automata(NFA) (1)DFA定义 (2)NFA定义 A “nonedeterministic” finite automata has the power t…

python之绘制曲线

以同一种型号的钻头,钻21种类型的板材,每种板材使用3根钻头,分别在钻第一个孔、2001孔、4001孔和6001孔前测量钻头外径,收集数据。 1、测试方法 采用激光钻径分选机测量微钻钻径以评估微钻外径磨损,测量从钻尖起始间…

C语言-文件

目录 1.什么是文件?1.1 程序文件1.2 数据文件 2.二进制文件和文本文件?3.文件的打开和关闭4.文件的顺序读写5.文件的随机读写5.1 fseek5.2 ftell5.3 rewind 6.文件读取结束的判定7.文件缓冲区 1.什么是文件? 磁盘上的文件就是文件 一般包含两…

使用pytorch构建带梯度惩罚的Wasserstein GAN(WGAN-GP)网络模型

本文为此系列的第三篇WGAN-GP,上一篇为DCGAN。文中仍然不会过多详细的讲解之前写过的,只会写WGAN-GP相对于之前版本的改进点,若有不懂的可以重点看第一篇比较详细。 原理 具有梯度惩罚的 Wasserstein GAN (WGAN-GP)可以解决 GAN 的一些稳定性…

caffe源码编译安装

一、前置准备 (1)vs2015 目前不要想着2019这些工具了,成功率太低了,就老老实实用vs2015吧 解决“VS2015安装包丢失或损坏“问题_vs2015跳过包会影响使用吗-CSDN博客 注意在安装vs2015过程中老是出现这个问题,其实就是缺少两个证书,安装完后就可以正常安装vs2015了,注意…

大数据面试专题 -- kafka

1、什么是消息队列? 是一个用于存放数据的组件,用于系统之间或者是模块之间的消息传递。 2、消息队列的应用场景? 主要是用于模块之间的解耦合、异步处理、日志处理、流量削峰 3、什么是kafka? kafka是一种基于订阅发布模式的…

AE——重构数字(Pytorch+mnist)

1、简介 AE(自编码器)由编码器和解码器组成,编码器将输入数据映射到潜在空间,解码器将潜在表示映射回原始输入空间。AE的训练目标通常是最小化重构误差,即尽可能地重构输入数据,使得解码器输出与原始输入尽…

什么是nginx正向代理和反向代理?

什么是代理? 代理(Proxy), 简单理解就是自己做不了的事情或实现不了的功能,委托别人去做。 什么是正向代理? 在nginx中,正向代理指委托者是客户端,即被代理的对象是客户端 在这幅图中,由于左边内网中…

如何解决kafka rebalance导致的暂时性不能消费数据问题

文章目录 背景思考答案排它故障转移共享 背景 之前在review同组其它业务的时候,发现竟然把kafka去掉了,问了下原因,有一个单独的服务,我们可以把它称为agent,就是这个服务是动态扩缩容的,会采集一些指标&a…

k8s的pod访问service的方式

背景 在k8s中容器访问某个service服务时有两种方式,一种是把每个要访问的service的ip注入到客户端pod的环境变量中,另一种是客户端pod先通过DNS服务器查找对应service的ip地址,然后在通过这个service ip地址访问对应的service服务 pod客户端…

HarmonyOS 应用开发之FA模型访问Stage模型DataShareExtensionAbility

概述 无论FA模型还是Stage模型,数据读写功能都包含客户端和服务端两部分。 FA模型中,客户端是由DataAbilityHelper提供对外接口,服务端是由DataAbility提供数据库的读写服务。 Stage模型中,客户端是由DataShareHelper提供对外接…

腾讯云2核2G服务器优惠价格,61元一年

腾讯云2核2G服务器多少钱一年?轻量服务器61元一年,CVM 2核2G S5服务器313.2元15个月,轻量2核2G3M带宽、40系统盘,云服务器CVM S5实例是2核2G、50G系统盘。腾讯云2核2G服务器优惠活动 txybk.com/go/txy 链接打开如下图:…

java数组与集合框架(三)--Map,Hashtable,HashMap,LinkedHashMap,TreeMap

Map集合: Map接口: 基于 键(key)/值(value)映射 Map接口概述 Map与Collection并列存在。用于保存具有映射关系的数据:key-value Map 中的key 和value 都可以是任何引用类型的数据Map 中的key 用Set来存放&#xff0…

X进制减法(蓝桥杯)

文章目录 X进制减法题目描述解题思路贪心算法模拟减法(大数相减) X进制减法 题目描述 进制规定了数字在数位上逢几进一。 X 进制是一种很神奇的进制,因为其每一数位的进制并不固定!例如说某种 X 进制数,最低数位为二…

创建Qt Quick Projects

在创建Qt Quick项目之前,我们简单说一下Qml和Qt Quick的关系:它们的关系类似于C和STL标准库的关系,Qml类比C语言,提供了基本语言特性和类型;而Qt Quick则类比STL标准库,Qt Quick在QML的基础上加入了一系列界…

Https【Linux网络编程】

目录 一、为什么需要https 二、常见加密方法 1、对称加密 2、非对称加密 3、数据指纹 三、选择什么加密方案? 方案一:对称加密() 方案二:双方使用非对称加密(效率低) 方案三&#xff1a…

深度学习十大算法之Diffusion扩散模型

1. 引言 扩散模型在近年来成为了热门话题,其火速蹿红主要归功于在图像生成领域的突破应用。尤其是一些从文本到图像的生成技术,它们成功地运用了扩散模型来创建令人惊叹的逼真图像。如果你听说过某个应用能够迅速且高质量地生成图像,那么很可…

【SpringBoot整合系列】SpirngBoot整合EasyExcel

目录 背景需求发展 EasyExcel官网介绍优势常用注解 SpringBoot整合EaxyExcel1.引入依赖2.实体类定义实体类代码示例注解解释 3.自定义转换器转换器代码示例涉及的枚举类型 4.Excel工具类5.简单导出接口SQL 6.简单导入接口SQL 7.复杂的导出(合并行、合并列&#xff0…

docker 共享网络的方式实现容器互联

docker 共享网络的方式实现容器互联 本文以nacos连接mysql为例 前提已经在mysql容器中初始化好nacos数据库,库名nacos 创建一个共享网络 docker network create --driver bridge \ --subnt 192.168.0.0/24 \ --gateway 192.168.0.1 mynet此处可以不指定网络模式、…

Python下载bing每日壁纸并实现win11 壁纸自动切换

前言: 爬虫哪家强,当然是python 我是属于啥语言都用,都懂点,不精通,实际工作中能能够顶上就可以。去年写的抓取bing每日的壁纸,保存到本地,并上传到阿里云oss,如果只是本地壁纸切换,存下来就行,一直想做个壁纸站点&…