回溯算法|216.组合总和III

news2025/1/20 12:01:32

力扣题目链接

class Solution {
private:
    vector<vector<int>> result; // 存放结果集
    vector<int> path; // 符合条件的结果
    // targetSum:目标和,也就是题目中的n。
    // k:题目中要求k个数的集合。
    // sum:已经收集的元素的总和,也就是path里元素的总和。
    // startIndex:下一层for循环搜索的起始位置。
    void backtracking(int targetSum, int k, int sum, int startIndex) {
        if (path.size() == k) {
            if (sum == targetSum) result.push_back(path);
            return; // 如果path.size() == k 但sum != targetSum 直接返回
        }
        for (int i = startIndex; i <= 9; i++) {
            sum += i; // 处理
            path.push_back(i); // 处理
            backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
            sum -= i; // 回溯
            path.pop_back(); // 回溯
        }
    }

public:
    vector<vector<int>> combinationSum3(int k, int n) {
        result.clear(); // 可以不加
        path.clear();   // 可以不加
        backtracking(n, k, 0, 1);
        return result;
    }
};

回溯算法那个模板你了解了嘛

其实多用几次它就能很好的理解这类题目了

代码随想录 (programmercarl.com)

思路

本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。

相对于77. 组合 (opens new window),无非就是多了一个限制,本题是要找到和为n的k个数的组合,而整个集合已经是固定的了[1,...,9]。

想到这一点了,做过77. 组合 (opens new window)之后,本题是简单一些了。

本题k相当于树的深度,9(因为整个集合就是9个数)就是树的宽度。

例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。

选取过程如图:

216.组合总和III

图中,可以看出,只有最后取到集合(1,3)和为4 符合条件。

#回溯三部曲

  • 确定递归函数参数

和77. 组合 (opens new window)一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。

这里我依然定义path 和 result为全局变量。

至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。

vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果

接下来还需要如下参数:

  • targetSum(int)目标和,也就是题目中的n。
  • k(int)就是题目中要求k个数的集合。
  • sum(int)为已经收集的元素的总和,也就是path里元素的总和。
  • startIndex(int)为下一层for循环搜索的起始位置。

所以代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking(int targetSum, int k, int sum, int startIndex)

其实这里sum这个参数也可以省略,每次targetSum减去选取的元素数值,然后判断如果targetSum为0了,说明收集到符合条件的结果了,我这里为了直观便于理解,还是加一个sum参数。

还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。

  • 确定终止条件

什么时候终止呢?

在上面已经说了,k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。

所以如果path.size() 和 k相等了,就终止。

如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。

所以 终止代码如下:

if (path.size() == k) {
    if (sum == targetSum) result.push_back(path);
    return; // 如果path.size() == k 但sum != targetSum 直接返回
}

  • 单层搜索过程

本题和77. 组合 (opens new window)区别之一就是集合固定的就是9个数[1,...,9],所以for循环固定i<=9

如图: 

216.组合总和III

处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。

代码如下:

for (int i = startIndex; i <= 9; i++) {
    sum += i;
    path.push_back(i);
    backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
    sum -= i; // 回溯
    path.pop_back(); // 回溯
}

别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!

参照关于回溯算法,你该了解这些! (opens new window)中的模板,不难写出如下C++代码:

class Solution {
private:
    vector<vector<int>> result; // 存放结果集
    vector<int> path; // 符合条件的结果
    // targetSum:目标和,也就是题目中的n。
    // k:题目中要求k个数的集合。
    // sum:已经收集的元素的总和,也就是path里元素的总和。
    // startIndex:下一层for循环搜索的起始位置。
    void backtracking(int targetSum, int k, int sum, int startIndex) {
        if (path.size() == k) {
            if (sum == targetSum) result.push_back(path);
            return; // 如果path.size() == k 但sum != targetSum 直接返回
        }
        for (int i = startIndex; i <= 9; i++) {
            sum += i; // 处理
            path.push_back(i); // 处理
            backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
            sum -= i; // 回溯
            path.pop_back(); // 回溯
        }
    }

public:
    vector<vector<int>> combinationSum3(int k, int n) {
        result.clear(); // 可以不加
        path.clear();   // 可以不加
        backtracking(n, k, 0, 1);
        return result;
    }
};

#剪枝

这道题目,剪枝操作其实是很容易想到了,想必大家看上面的树形图的时候已经想到了。

如图: 

216.组合总和III1

已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。

那么剪枝的地方可以放在递归函数开始的地方,剪枝代码如下:

if (sum > targetSum) { // 剪枝操作
    return;
}

当然这个剪枝也可以放在 调用递归之前,即放在这里,只不过要记得 要回溯操作给做了。

for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
    sum += i; // 处理
    path.push_back(i); // 处理
    if (sum > targetSum) { // 剪枝操作
        sum -= i; // 剪枝之前先把回溯做了
        path.pop_back(); // 剪枝之前先把回溯做了
        return;
    }
    backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
    sum -= i; // 回溯
    path.pop_back(); // 回溯
}

和回溯算法:组合问题再剪剪枝 (opens new window)一样,for循环的范围也可以剪枝,i <= 9 - (k - path.size()) + 1就可以了。

最后C++代码如下:

class Solution {
private:
    vector<vector<int>> result; // 存放结果集
    vector<int> path; // 符合条件的结果
    void backtracking(int targetSum, int k, int sum, int startIndex) {
        if (sum > targetSum) { // 剪枝操作
            return; 
        }
        if (path.size() == k) {
            if (sum == targetSum) result.push_back(path);
            return; // 如果path.size() == k 但sum != targetSum 直接返回
        }
        for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
            sum += i; // 处理
            path.push_back(i); // 处理
            backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
            sum -= i; // 回溯
            path.pop_back(); // 回溯
        }
    }

public:
    vector<vector<int>> combinationSum3(int k, int n) {
        result.clear(); // 可以不加
        path.clear();   // 可以不加
        backtracking(n, k, 0, 1);
        return result;
    }
};

  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

自己的理解:

关于枝剪这一步的优化,自己还不是很明白。

然后还有注意命名,好的命名可以让你在敲代码时事半功倍~

以下是自己独自敲的代码,还是会有点小问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1557048.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Quixel Mixer】简单介绍

一、下载 官网下载地址&#xff1a;Quixel Mixer - All-in-one texturing & material creation tool 下载好之后双击exe来安装 等待安装完成 下载后打开&#xff0c;新建一个工程和Mix 二、界面介绍 我们先将软件界面分为如下3个部分 1号区域为菜单栏 2号区域介绍 2号…

【Linux】POSIX信号量{基于环形队列的PC模型/理解信号量的出现/参考代码}

文章目录 1.POSIX信号量1.1介绍1.2接口 2.基于环形队列的PC模型2.1环形队列常用计算2.2如何设计&#xff1f;2.3如何实现&#xff1f; 3.细节处理3.1空间资源和数据资源3.2push/pop3.3理解信号量的出现1.回顾基于阻塞队列的PC模型中条件变量的使用2.如何理解信号量的投入使用&a…

数据结构:链表的双指针技巧

文章目录 一、链表相交问题二、单链表判环问题三、回文链表四、重排链表结点 初学双指针的同学&#xff0c;请先弄懂删除链表的倒数第 N 个结点。 并且在学习这一节时&#xff0c;不要将思维固化&#xff0c;认为只能这样做&#xff0c;这里的做法只是技巧。 一、链表相交问题 …

报错:ImportError: cannot import name ‘imread‘ from ‘scipy.misc‘

报错内容&#xff1a; 问题代码通常是导入scipy库的版本出现了问题。 解决方法&#xff1a; 方法一&#xff1a; scipy版本还原到1.2.0 pip install scipy1.2.0 方法二&#xff1a; 使用from imageio import imread进行替换from scipy.misc import imread 使用imageio库同…

预处理详解(二)-- 条件编译 - 头文件包含 - ##和#运算符

目录 一.##和#运算符1.#运算符&#xff08;字符串化&#xff09;2.##运算符&#xff08;粘合符&#xff09; 二.条件编译&#xff08;很重要&#xff09;三.命名约定1.宏名的命名2.函数的命名 四.#undef(用于移除一个宏定义)五.命名行约定六.头文件被包含的方式1.本地文件包含2…

推特Twitter有直播功能吗?如何用Twitter直播?

现在各大直播平台已经成为社交媒体营销的一种重要渠道&#xff0c;它让品牌能够即时地与全球受众进行互动。据统计&#xff0c;直播市场正在迅速增长&#xff0c;预计到2028年将达到2230亿美元的规模。在这个不断扩张的市场中&#xff0c;许多社交媒体平台如YouTube、Facebook、…

消息队列的七种经典应用场景

在笔者心中&#xff0c;消息队列&#xff0c;缓存&#xff0c;分库分表是高并发解决方案三剑客。 在职业生涯中&#xff0c;笔者曾经使用过 ActiveMQ 、RabbitMQ 、Kafka 、RocketMQ 这些知名的消息队列 。 这篇文章&#xff0c;笔者结合自己的真实经历&#xff0c;和大家分享…

在ROS上快速验证PID算法

在ROS上快速验证PID算法 前言 最近有在外面出差授课的工作任务&#xff0c;其中有一个环节是给大家讲述PID相关的内容&#xff0c;在制作相关PPT的时候查询了很多资料&#xff0c;但是写着写着突然意识到一个问题&#xff0c;PID已经在控制专业学习过程以及工程开发时间中那么…

量化交易入门(二十五)什么是RSI,原理和炒股实操

前面我们了解了KDJ&#xff0c;MACD&#xff0c;MTM三个技术指标&#xff0c;也进行了回测&#xff0c;结果有好有坏&#xff0c;今天我们来学习第四个指标RSI。RSI指标全称是相对强弱指标(Relative Strength Index),是通过比较一段时期内的平均收盘涨数和平均收盘跌数来分析市…

【YOLOv5改进系列(9)】高效涨点----使用CAM(上下文增强模块)替换掉yolov5中的SPPF模块

文章目录 &#x1f680;&#x1f680;&#x1f680;前言一、1️⃣ CAM模块详细介绍二、2️⃣CAM模块的三种融合模式三、3️⃣如何添加CAM模块3.1 &#x1f393; 添加CAM模块代码3.2 ✨添加yolov5s_CAM.yaml文件3.3 ⭐️修改yolo.py文相关文件 四、4️⃣实验结果4.1 &#x1f39…

HTB devvortex靶机记录

做这个靶机的师傅们我先提一句&#xff0c;不知道是否是因为网速还是其他因素影响&#xff0c;登录后台管理后&#xff0c;有大概率会被其他人挤下去&#xff0c;所以做这道题的师傅可以考虑在没人的时候去做。 打开靶场以后老规矩nmap扫一遍 这里爆出了80端口和22端口&#xf…

解决Veeam做Replication复制或备份任务并发数量少问题

Veeam执行replication复制或者备份任务时&#xff0c;一直都只有两个任务并发在跑&#xff0c;其他同时间任务只能等待前两个任务处理完才可以开始。 解决方法&#xff1a; 进入Veeam-Bacup Infrastructure-Backup Proxies&#xff0c;可以看到VMware Backup Proxy&#xff0…

【并发】第二篇 ThreadLocal详解

导航 一. ThreadLocal 简介二. ThreadLocal 源码解析1. get2. set3 .remove4. initialValue三. ThreadLocalMap 源码分析1. 构造方法2. getEntry()3. set()4. resize()5. expungeStaleEntries()6. cleanSomeSlots()7. nextIndex()8. remove()9. 总结ThreadLocalMap四. 内存泄漏…

@EnableWebMvc 导致自定义序列化器失效

目录 前言 一. 自定义序列化器失效 1.1 EnableWebMvc 的作用 1.2 EnableWebMvc 带来了什么后果 1.3 原理分析 1.4 问题解决 二. 总结 前言 在使用Swagger的时候用 到了EnableWebMvc&#xff0c;发现之前为了解决Long类型、日期类型等自定义序列化器失效了 Configurati…

TransformControls 是 Three.js 中的一个类,用于在网页中进行 3D 场景中物体的交互式操作。

demo案例 TransformControls 是 Three.js 中的一个类&#xff0c;用于在网页中进行 3D 场景中物体的交互式操作。让我们来详细讲解它的输入参数、输出、属性和方法&#xff1a; 输入参数&#xff1a; TransformControls 构造函数通常接受两个参数&#xff1a; camera&#…

企业培训系统功能介绍

在当今知识经济时代&#xff0c;企业的竞争力在很大程度上取决于员工的专业能力和综合素质。为了适应不断变化的市场需求和技术进步&#xff0c;企业需要对员工进行持续有效的培训。一个高效的企业培训系统对企业人才培训至关重要。以下介绍一下企业培训系统的主要功能&#xf…

【Qt 学习笔记】Day1 | Qt 开发环境的搭建

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Qt 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Day1 | Qt 开发环境的搭建 文章编号&#xff1a;Qt 学习笔记 / 02 文…

下载huggingface中数据集/模型(保存到本地指定路径)

一. snapshot_download # 1.安装huggingface_hub # pip install huggingface_hubimport osfrom huggingface_hub import snapshot_downloadprint(downloading entire files...) # 注意&#xff0c;这种方式仍然保存在cache_dir中 snapshot_download(repo_id"ibrahimhamam…

线程池详解、核心参数、拒绝策略

什么是线程池 线程池是一种池化技术&#xff0c;它预先创建一组线程&#xff0c;用于执行异步任务。当有新任务到来时&#xff0c;线程池可以立即分配一个线程来处理&#xff0c;而不需要临时创建。这样可以减少因为频繁创建和销毁线程而导致的开销。 线程池的应用场景 高并…

【Go】五、流程控制

文章目录 1、if2、switch3、for4、for range5、break6、continue7、goto8、return 1、if 条件表达式左右的()是建议省略的if后面一定要有空格&#xff0c;和条件表达式分隔开来{ }一定不能省略if后面可以并列的加入变量的定义 if count : 20;count < 30 {fmt.Println(&quo…