【图论】【割点】【C++算法】928. 尽量减少恶意软件的传播 II

news2025/1/4 19:21:59

作者推荐

视频算法专题

涉及知识点

图论 割点

LeetCode928. 尽量减少恶意软件的传播 II

给定一个由 n 个节点组成的网络,用 n x n 个邻接矩阵 graph 表示。在节点网络中,只有当 graph[i][j] = 1 时,节点 i 能够直接连接到另一个节点 j。
一些节点 initial 最初被恶意软件感染。只要两个节点直接连接,且其中至少一个节点受到恶意软件的感染,那么两个节点都将被恶意软件感染。这种恶意软件的传播将继续,直到没有更多的节点可以被这种方式感染。
假设 M(initial) 是在恶意软件停止传播之后,整个网络中感染恶意软件的最终节点数。
我们可以从 initial 中删除一个节点,并完全移除该节点以及从该节点到任何其他节点的任何连接。
请返回移除后能够使 M(initial) 最小化的节点。如果有多个节点满足条件,返回索引 最小的节点 。
示例 1:
输入:graph = [[1,1,0],[1,1,0],[0,0,1]], initial = [0,1]
输出:0
示例 2:
输入:graph = [[1,1,0],[1,1,1],[0,1,1]], initial = [0,1]
输出:1
示例 3:
输入:graph = [[1,1,0,0],[1,1,1,0],[0,1,1,1],[0,0,1,1]], initial = [0,1]
输出:1
提示:
n == graph.length
n == graph[i].length
2 <= n <= 300
graph[i][j] 是 0 或 1.
graph[i][j] == graph[j][i]
graph[i][i] == 1
1 <= initial.length < n
0 <= initial[i] <= n - 1
initial 中每个整数都不同

割点

时间复杂度O(nn),无提升。原理见: 【图论】【并集查找】【C++算法】928. 尽量减少恶意软件的传播 II

代码

class CNeiBo
{
public:	
	static vector<vector<int>> Two(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) 
	{
		vector<vector<int>>  vNeiBo(n);
		for (const auto& v : edges)
		{
			vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase);
			if (!bDirect)
			{
				vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase);
			}
		}
		return vNeiBo;
	}	
	static vector<vector<std::pair<int, int>>> Three(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0)
	{
		vector<vector<std::pair<int, int>>> vNeiBo(n);
		for (const auto& v : edges)
		{
			vNeiBo[v[0] - iBase].emplace_back(v[1] - iBase, v[2]);
			if (!bDirect)
			{
				vNeiBo[v[1] - iBase].emplace_back(v[0] - iBase, v[2]);
			}
		}
		return vNeiBo;
	}
	static vector<vector<int>> Grid(int rCount, int cCount, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext)
	{
		vector<vector<int>> vNeiBo(rCount * cCount);
		auto Move = [&](int preR, int preC, int r, int c)
		{
			if ((r < 0) || (r >= rCount))
			{
				return;
			}
			if ((c < 0) || (c >= cCount))

			{
				return;
			}
			if (funVilidCur(preR, preC) && funVilidNext(r, c))
			{
				vNeiBo[cCount * preR + preC].emplace_back(r * cCount + c);
			}
		};

		for (int r = 0; r < rCount; r++)
		{
			for (int c = 0; c < cCount; c++)
			{
				Move(r, c, r + 1, c);
				Move(r, c, r - 1, c);
				Move(r, c, r, c + 1);
				Move(r, c, r, c - 1);
			}
		}
		return vNeiBo;
	}
	static vector<vector<int>> Mat(vector<vector<int>>& neiBoMat)
	{
		vector<vector<int>> neiBo(neiBoMat.size());
		for (int i = 0; i < neiBoMat.size(); i++)
		{
			for (int j = i + 1; j < neiBoMat.size(); j++)
			{
				if (neiBoMat[i][j])
				{
					neiBo[i].emplace_back(j);
					neiBo[j].emplace_back(i);
				}
			}
		}
		return neiBo;
	}
};

class CCutPoint
{
public:
	CCutPoint(const vector<vector<int>>& vNeiB) : m_iSize(vNeiB.size())
	{
		m_vNodeToTime.assign(m_iSize, -1);
		m_vCutNewRegion.resize(m_iSize);		
	}
	void Init(const vector<vector<int>>& vNeiB)
	{
		for (int i = 0; i < m_iSize; i++)
		{
			if (-1 == m_vNodeToTime[i])
			{
				m_vRegionFirstTime.emplace_back(m_iTime);
				dfs(vNeiB, i, -1);
			}
		}
	}	
	const int m_iSize;
	const vector<int>& Time()const { return m_vNodeToTime; }//各节点的时间戳
	const vector<int>& RegionFirstTime()const { return m_vRegionFirstTime; }//各连通区域的最小时间戳
	vector<bool> CalCut()const { 
		vector<bool> ret;
		for (int i = 0; i < m_iSize; i++)
		{
			ret.emplace_back(m_vCutNewRegion[i].size());
		}
		return ret; }//
	const vector < vector<pair<int, int>>>& NewRegion()const { return m_vCutNewRegion; };
protected:
	int dfs(const vector<vector<int>>& vNeiB, const int cur, const int parent)
	{
		int iMinTime = m_vNodeToTime[cur] = m_iTime++;
		OnBeginDFS(cur);
		int iRegionCount = (-1 != parent);//根连通区域数量
		for (const auto& next : vNeiB[cur]) {
			if (next == parent)
			{
				continue;
			}
			if (-1 != m_vNodeToTime[next]) {
				iMinTime = min(iMinTime, m_vNodeToTime[next]);
				continue;
			}
			const int childMinTime = dfs(vNeiB, next, cur);
			iMinTime = min(iMinTime, childMinTime);
			if (childMinTime >= m_vNodeToTime[cur]) {
				iRegionCount++;
				m_vCutNewRegion[cur].emplace_back(m_vNodeToTime[next], m_iTime);
			}
			OnVisitNextEnd(childMinTime,cur, next);
		}
		if (iRegionCount < 2)
		{
			m_vCutNewRegion[cur].clear();
		}
		return iMinTime;
	}
	virtual void OnVisitNextEnd(int childMinTime,int cur, int next) {};
	virtual void OnBeginDFS(int cur) {};
	vector<int> m_vNodeToTime;
	vector<int> m_vRegionFirstTime;
	vector < vector<pair<int, int>>> m_vCutNewRegion; //m_vCutNewRegion[c]如果存在[left,r) 表示割掉c后,时间戳[left,r)的节点会形成新区域
	int m_iTime = 0;
};

class CCutEdge : public CCutPoint
{
public:
	using CCutPoint::CCutPoint;
	vector<vector<int>> m_vCutEdges;
protected:
	virtual void OnVisitNextEnd(int childMinTime, int cur, int next) override {
		if (childMinTime > m_vNodeToTime[cur])
		{
			m_vCutEdges.emplace_back(vector<int>{ cur,next });
		}
	}
};

class CConnectAfterCutPoint 
{
public:
	CConnectAfterCutPoint(const vector<vector<int>>& vNeiB) :m_ct(vNeiB)
	{
		m_ct.Init(vNeiB);
		m_vTimeToNode.resize(m_ct.m_iSize);
		m_vNodeToRegion.resize(m_ct.m_iSize);
		for (int iNode = 0; iNode < m_ct.m_iSize; iNode++)
		{
			m_vTimeToNode[m_ct.Time()[iNode]] = iNode;
		}
		for (int iTime = 0,iRegion= 0; iTime < m_ct.m_iSize; iTime++)
		{
			if ((iRegion < m_ct.RegionFirstTime().size()) && (m_ct.RegionFirstTime()[iRegion] == iTime))
			{
				iRegion++;
			}
			m_vNodeToRegion[m_vTimeToNode[iTime]] = (iRegion - 1);
		}
	}
	bool Connect(int src, int dest, int iCut)const
	{
		if (m_vNodeToRegion[src] != m_vNodeToRegion[dest])
		{
			return false;//不在一个连通区域
		}
		if (0 == m_ct.NewRegion()[iCut].size())
		{//不是割点
			return true;
		}
		const int r1 = GetCutRegion(iCut, src);
		const int r2 = GetCutRegion(iCut, dest);
		return r1 == r2;
	}
	vector<vector<int>> GetSubRegionOfCut(const int iCut)const
	{//删除iCut及和它相连的边后,iCut所在的区域会分成几个区域:父节点一个区域、各子节点		一个区域
			//父节点所在区域可能为空,如果iCut所在的连通区域只有一个节点,则返回一个没有节点的			区域。
		const auto& v = m_ct.NewRegion()[iCut];
		vector<int> vParen;
		const int iRegion = m_vNodeToRegion[iCut];
		const int iEndTime = (iRegion + 1 == m_ct.RegionFirstTime().size()) ? m_ct.m_iSize : m_ct.RegionFirstTime()[iRegion+1];
		vector<vector<int>> vRet;	
		for (int iTime = m_ct.RegionFirstTime()[iRegion],j=-1; iTime < iEndTime; iTime++)
		{
			if (iCut == m_vTimeToNode[iTime])
			{
				continue;
			}
			if ((j + 1 < v.size()) && (v[j + 1].first == iTime))
			{
				j++;
				vRet.emplace_back();
			}
			const int iNode = m_vTimeToNode[iTime];
			if ((-1 != j ) && (iTime >= v[j].first) && (iTime < v[j].second))
			{
				vRet.back().emplace_back(iNode);
			}
			else
			{
				vParen.emplace_back(iNode);
			}			
		}
		vRet.emplace_back();
		vRet.back().swap(vParen);
		return vRet;
	}	
protected:
	int GetCutRegion(int iCut, int iNode)const
	{
		const auto& v = m_ct.NewRegion()[iCut];
		auto it = std::upper_bound(v.begin(), v.end(), m_ct.Time()[iNode], [](int time, const std::pair<int, int>& pr) {return  time < pr.first; });
		if (v.begin() == it)
		{
			return v.size();
		}
		--it;
		return (it->second > m_ct.Time()[iNode]) ? (it - v.begin()) : v.size();
	}
	vector<int> m_vTimeToNode;
	vector<int> m_vNodeToRegion;//各节点所在区域
	CCutPoint m_ct;
};

class CMyCut : public CConnectAfterCutPoint
{
public:
	using CConnectAfterCutPoint::CConnectAfterCutPoint;
	int Do(const unordered_set<int>& setInit)
	{
		vector<int> vM;//各区域感染数量
		vector<int> vInitM;
		for (int iRegion = 0; iRegion < m_ct.RegionFirstTime().size(); iRegion++)
		{
			const auto [iBegin, iEnd] = GetBeginEnd(iRegion);
			const int iInitM = MCount(iBegin, iEnd, setInit);
			vInitM.emplace_back(iInitM);
			vM.emplace_back((iInitM>0) ? (iEnd - iBegin) : 0);
		}
		set<pair<int, int>> setPlusSubIndex;
		for (const auto& iNode : setInit)
		{
			const int iRegion = m_vNodeToRegion[iNode];
			int curSub = vM[iRegion];
			auto subRegion = GetSubRegionOfCut(iNode);
			for (const auto& v : subRegion)
			{
				int iInitM = 0;
				for (const auto& n : v)
				{
					iInitM += setInit.count(n);
				}
				if (iInitM > 0)
				{
					curSub -= v.size();
				}
			}
			setPlusSubIndex.emplace(-curSub, iNode);
		}
		return setPlusSubIndex.begin()->second;
	}
	int MCount(int iBegin,int iEnd, const unordered_set<int>& setInit)
	{
		int iM = 0;
		for (int iTime = iBegin; iTime < iEnd; iTime++)
		{
			const int iNode = m_vTimeToNode[iTime];
			if (setInit.count(iNode))
			{
				iM++;
			}
		}
		return iM;
	}
	pair<int, int> GetBeginEnd(int iRegion)
	{
		const int iEnd = (iRegion + 1 == m_ct.RegionFirstTime().size()) ? m_ct.m_iSize : m_ct.RegionFirstTime()[iRegion + 1];
		return { m_ct.RegionFirstTime()[iRegion] ,iEnd};
	}
};
class Solution {
public:
	int minMalwareSpread(vector<vector<int>>& graph, vector<int>& initial) {
		m_c = graph.size();
		unordered_set<int> setInit(initial.begin(), initial.end());
		auto neiBo = CNeiBo::Mat(graph);
		CMyCut cut(neiBo);
		return cut.Do(setInit);
	}
	int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1553127.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

八大技术趋势案例(云计算大数据)

科技巨变,未来已来,八大技术趋势引领数字化时代。信息技术的迅猛发展,深刻改变了我们的生活、工作和生产方式。人工智能、物联网、云计算、大数据、虚拟现实、增强现实、区块链、量子计算等新兴技术在各行各业得到广泛应用,为各个领域带来了新的活力和变革。 为了更好地了解…

<el-table>设置一列为固定字段,其他列为循环生成

<el-table :data"tableData" style"width: 100%"><el-table-columnprop"name"label"固定字段名":formatter"formatter"></el-table-column><el-table-columnv-for"(item, index) in wordsColumns…

【Golang入门教程】Go语言变量的初始化

文章目录 强烈推荐引言举例多个变量同时赋值总结强烈推荐专栏集锦写在最后 强烈推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站:人工智能 推荐一个个人工作&#xff0c;日常中比较常…

学透Spring Boot — [二] Spring 和 Spring Boot的比较

欢迎关注我们的专栏 学透 Spring Boot 一、创建一个简单Web应用 本篇文章&#xff0c;我们将会比较 Spring 框架和 Spring Boot 的区别。 什么是 Spring? 也许你在项目中已经可以很熟练的使用 Spring 了&#xff0c;但是当被问到这个问题时&#xff0c;会不会犹豫一下&#…

[flink 实时流基础系列]揭开flink的什么面纱基础一

Apache Flink 是一个框架和分布式处理引擎&#xff0c;用于在无边界和有边界数据流上进行有状态的计算。Flink 能在所有常见集群环境中运行&#xff0c;并能以内存速度和任意规模进行计算。 文章目录 0. 处理无界和有界数据无界流有界流 1. Flink程序和数据流图2. 为什么一定要…

冒泡排序(六大排序)

冒泡排序 冒泡排序的特性总结&#xff1a; 1. 冒泡排序是一种非常容易理解的排序 2. 时间复杂度&#xff1a;O(N^2) 3. 空间复杂度&#xff1a;O(1) 4. 稳定性&#xff1a;稳定 动图分析&#xff1a; 代码实现&#xff1a; Swap(int*p1,int*p2) {int tmp *p1;*p1*p2…

基于SSM学生信息管理系统

采用技术 基于SSM学生信息管理系统的设计与实现~ 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringMVCMyBatis 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 页面展示效果 总体功能设计 登录页面 后台首页 学生信息页面 添加学生用户 编辑…

Java八股文(数据结构)

Java八股文の数据结构 数据结构 数据结构 请解释以下数据结构的概念&#xff1a;链表、栈、队列和树。 链表是一种线性数据结构&#xff0c;由节点组成&#xff0c;每个节点包含了指向下一个节点的指针&#xff1b; 栈是一种后进先出&#xff08;LIFO&#xff09;的数据结构&a…

【教学类-35-20】20240328 中4班描字帖(学号+姓名 A4竖版2份 横面)+裁剪纸条+插入式纸盒

作品展示 背景需求&#xff1a; 整理仓库&#xff0c;找到之前打印的另外一套灰色版的学号字体&#xff08;和2月20日那份一模一样&#xff09; 【教学类-35-19】20240117 中4班描字帖&#xff08;学号姓名 A4竖版2份 横面&#xff09;-CSDN博客文章浏览阅读571次&#xff0c;…

Mysql数据库-DQL查询

Mysql数据库-DQL基本查询 1 DQL基本查询1.1 基础查询1.2 WHERE子句1&#xff09;算术运算符2&#xff09;逻辑运算符3&#xff09;比较运算符A&#xff09;BETWEEN... AND ...B&#xff09;IN(列表)C&#xff09;NULL值判断 4&#xff09;综合练习 2 DQL高级查询2.1 LIKE 模糊查…

SAP-CO主数据之统计指标创建-<KK01>

公告&#xff1a;周一至周五每日一更&#xff0c;周六日存稿&#xff0c;请您点“关注”和“在看”&#xff0c;后续推送的时候不至于看不到每日更新内容&#xff0c;感谢。 目录 一、背景&#xff1a; 成本中心主数据创建&#xff1a;传送门 成本要素主数据创建&#xff1…

人工智能(pytorch)搭建模型26-基于pytorch搭建胶囊模型(CapsNet)的实践,CapsNet模型结构介绍

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能(pytorch)搭建模型26-基于pytorch搭建胶囊模型(CapsNet)的实践&#xff0c;CapsNet模型结构介绍。CapsNet&#xff08;Capsule Network&#xff09;是一种创新的深度学习模型&#xff0c;由计算机科学家Geo…

Linux——信号的保存与处理

目录 前言 一、信号的常见概念 1.信号递达 2.信号未决 3.信号阻塞 二、Linux中的递达未决阻塞 三、信号集 四、信号集的处理 1.sig相关函数 2.sigprocmask()函数 3.sigpending()函数 五、信号的处理时机 六、信号处理函数 前言 在之前&#xff0c;我们学习了信号…

未发TOKEN的Scroll除了撸毛还能如何获取机会?来Penpad Season 2,享受一鱼多吃!

Penpad 是 Scroll 上的 LauncPad 平台&#xff0c;该平台继承了 Scroll 底层的技术优势&#xff0c;并基于零知识证明技术&#xff0c;推出了系列功能包括账户抽象化、灵活的挖矿功能&#xff0c;并将在未来实现合规为 RWA 等资产登录 Scroll 生态构建基础。该平台被认为是绝大…

STM32时钟简介

1、复位&#xff1a;使时钟恢复原始状态 就是将寄存器状态恢复到复位值 STM32E10xxx支持三种复位形式,分别为系统复位、上电复位和备份区域复位。 复位分类&#xff1a; 1.1系统复位 除了时钟控制器的RCC_CSR寄存器中的复位标志位和备份区域中的寄存器以外,系统 复位将复位…

Python学习:lambda(匿名函数)、装饰器、数据结构

Python Lambda匿名函数 Lambda函数&#xff08;或称为匿名函数&#xff09;是Python中的一种特殊函数&#xff0c;它可以用一行代码来创建简单的函数。Lambda函数通常用于需要一个函数作为输入的函数&#xff08;比如map()&#xff0c;filter()&#xff0c;sort()等&#xff0…

fast_bev学习笔记

目录 一. 简述二. 输入输出三. github资源四. 复现推理过程4.1 cuda tensorrt 版 一. 简述 原文:Fast-BEV: A Fast and Strong Bird’s-Eye View Perception Baseline FAST BEV是一种高性能、快速推理和部署友好的解决方案&#xff0c;专为自动驾驶车载芯片设计。该框架主要包…

ssm婚纱摄影管理系统的设计+1.2w字论文+免费调试

项目演示视频&#xff1a; ssm婚纱摄影管理系统的设计 项目介绍: 随着现在网络的快速发展&#xff0c;网上管理系统也逐渐快速发展起来&#xff0c;网上管理模式很快融入到了许多商家的之中&#xff0c;随之就产生了“婚纱摄影网的设计”&#xff0c;这样就让婚纱摄影网的设计更…

IDEA跑Java后端项目提示内存溢出

要设置几个地方&#xff0c;都试一下吧&#xff1a; 1、默认是700&#xff0c;我们设置大一点&#xff08;上次配置了这儿就解决了&#xff09; 2、 3、 4、-Xmx4g

Linux基础命令篇:文本处理命令基础操作(awk、sed、sort、uniq、wc)

Linux基础命令之文件处理 1. awk awk是一种文本处理工具&#xff0c;用于处理结构化文本数据。它基于模式匹配和动作来处理输入数据。以下是一些常用的awk选项和示例&#xff1a; 1.1- 打印指定字段&#xff1a;awk { print $1, $3 } input-file&#xff08;打印输入文件中的…