目标检测+车道线识别+追踪

news2025/1/11 15:02:27

一种方法:

车道线检测-canny边缘检测-霍夫变换

一、什么是霍夫变换

霍夫变换(Hough Transform)是一种在图像处理和计算机视觉中广泛使用的特征检测技术,主要用于识别图像中的几何形状,尤其是直线、圆和椭圆等常见形状。霍夫变换的核心思想是将图像空间中的形状检测问题转化为参数空间中的峰值检测问题,通过在参数空间中投票累积的方式寻找满足特定形状条件的参数组合,从而有效地识别出图像中的几何特征。

以下是霍夫变换的基本工作原理和步骤:

  1. 图像空间到参数空间的映射: 霍夫变换的关键在于它将图像中的点与参数空间中的曲线参数对应起来。对于直线检测,通常使用极坐标形式表示直线:ρ = xcosθ + ysinθ,其中ρ是直线到原点(通常取图像左上角)的距离,θ是直线的斜率角。对于每个图像中的边缘点(x, y),都可以在ρ-θ参数空间中对应一条曲线。同样,对于圆或椭圆的检测,也有对应的参数表示形式。

  2. 投票累积: 对于图像中的每一个边缘点,计算其在参数空间中对应的所有可能参数组合,并在对应的参数值处进行投票(通常是增加计数或累加)。这意味着在参数空间中,每一条可能的直线(或圆、椭圆)都会有一个累积值。这个过程可以形象地理解为,每个边缘点都在参数空间中“投出”一系列票,支持其可能属于的几何形状。

  3. 峰值检测: 在投票累积完成后,参数空间中会出现一些局部峰值,这些峰值对应于图像中具有大量支持点(即边缘点)的几何形状参数。通过设定阈值或寻找全局/局部极大值,可以识别出这些峰值,即找到了图像中最可能存在的几何形状的参数表示。

  4. 形状重构: 根据识别出的参数,可以在原始图像空间中画出相应的直线、圆或椭圆,完成形状的检测。对于直线,可以使用ρ和θ计算出直线的方程;对于圆或椭圆,根据找到的参数可以直接绘制出来。

霍夫变换的优点包括:

  • 抗噪声:由于采用累加投票的方式,少量噪声点不会对最终结果产生显著影响,除非它们恰好在同一条可能的形状参数线上大量聚集。
  • 对形状完整性的要求较低:即使图像中的几何形状部分遮挡或断裂,只要存在足够多的边缘点支持同一参数,霍夫变换仍能有效识别。

其局限性包括:

  • 计算复杂度较高:尤其在处理高分辨率图像或检测复杂形状时,参数空间的维数增加,导致投票累积和峰值检测的计算成本增大。
  • 对参数选择敏感:霍夫变换的效果很大程度上取决于参数空间的分辨率设置,选择不当可能导致真实形状未能有效识别或产生大量假阳性结果。

尽管现代计算机视觉中出现了许多基于深度学习的高效检测方法,霍夫变换因其简单、直观和鲁棒性,在特定应用场合(如工业检测、低复杂度硬件实现等)中仍然具有实用价值。

1. 基本思想

将传统的图像从X,Y轴坐标系变化到参数空间(m,b)或者霍夫空间(hough space)中,通过参数空间(可称为累加空间)计算局部最大值从而确定原始图像中直线或圆的位置。

二、边缘检测算法

边缘检测算法本质上就是一种滤波算法,区别在于滤波器的选择,其与滤波的规则是一致的。为了理解边缘检测算子,我们引入梯度这个概念,梯度在数字图像处理领域可以理解为像素灰度值变化速度,但在数字图像处理中,实际的应用是不需要求导的,只需要进行简单的加减运算。

几种基本的边缘检测滤波器:sobel、prewitt、roberts算子。

问题:直接使用基本的边缘算子求得的边缘图存在很多问题,如噪声污染没有被排除、边缘线太过粗宽等。因此我们介绍一个先进的边缘检测算子——canny算子。

目前流行的canny算法的具体步骤:
1. 高斯滤波

高斯滤波的原理:根据待滤波的像素点及其邻域点的灰度值按照高斯公式生成的参数规则进行加权平均。

2. 计算梯度图像与角度图像

canny中使用的梯度检测算子是使用高斯滤波器进行梯度计算得到的滤波器,得到的结果也类似于sobel算子,即距离中心点越近的像素点权重越大。
角度图像的计算则较为简单,其作用为非极大值抑制的方向提供指导。

3. 对梯度图像进行非极大值抑制

上一步得到的梯度图像存在边缘粗宽、弱边缘干扰等众多问题,现在可以使用非极大值抑制来寻找像素点局部最大值,将非极大值所对应的灰度值置0,极大值点置1,这样可以剔除一大部分非边缘的像素点,因此最后生成的图像应为一副二值图像,边缘理想状态下都为单像素边缘。

4. 使用双阈值进行边缘连接

经过以上三步得到的边缘质量已经很高了,但是还是存在许多伪边缘,因此canny算法采用的算法是双阈值法,具体思路是:选取两个阈值,将小于低阈值的点认为是假边缘置0,将大于高阈值的点认为是强边缘置1,介于中间的像素点需要进一步的检查。

第二种方法:

利用边缘与颜色提取车道线,利用仿射变换转换成鸟瞰图,并利用直方图滑动窗口的算法精确定位车道线,利用最小二乘法进行拟合,实现车道线的检测,并计算车辆偏离车道中心的距离,触发报警装置。

第三种方法:

深度学习车道线检测

第三种方法:

需要实现的yolo+车道线检测

大致思路

目标检测+车道线识别+追踪+测距

数据获取和预处理:
首先,从摄像头或传感器获取图像或视频流,并进行预处理。预处理步骤可能包括图像去噪、色彩校正和尺度调整等。

目标检测:
使用深度学习的目标检测算法YOLO对图像或视频中的目标进行检测和定位。这些算法可以输出每个目标的类别、位置和置信度等信息。

车道线识别:
对于每个图像帧,利用图像处理技术(如边缘检测和霍夫变换)来识别图像中的车道线。这可以提供关于道路结构和车道位置的信息。

追踪:
将目标检测结果与前一帧的跟踪结果进行匹配,以实现目标的连续追踪。使用运动模型和特征匹配等技术来预测和更新目标的位置。这可以提供目标的运动轨迹和速度等信息。

测距:
利用单目视觉或其他深度估计技术,根据目标在图像中的大小、形状和视差等信息,计算目标与相机之间的真实距离。这可以提供关于目标与车辆的相对距离,从而帮助系统做出更准确的决策。

集成和决策:
将目标检测、车道线识别、追踪和测距的结果进行集成,并进行高级决策和规划。例如,根据目标的类别、位置和速度等信息,进行避障、路径规划和车辆控制等决策。

参考文章:目标检测+车道线识别+追踪+测距(代码+部署运行)_车道目标检测和跟踪-CSDN博客


                        
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1552692.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ssm 房屋销售管理系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 ssm 房屋销售管理系统是一套完善的信息系统,结合springMVC框架完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码和数据库,系统主要采用B/S模…

Dify安装使用说明

dify功能简介 dify可以说是一个功能不错的LLMOps,可以通过dify集中管理模型,可以通过界面创建AI应用,可以上传文档形成知识库,可以创建自定义工具(API),并可以对外提供API。 相关功能类似Open…

华为云使用指南02

5.​​使用GitLab进行团队及项目管理​​ GitLab旨在帮助团队进行项目开发协作,为软件开发和运营生命周期提供了一个完整的DevOps方案。GitLab功能包括:项目源码的管理、计划、创建、验证、集成、发布、配置、监视和保护应用程序等。该镜像基于CentOS操…

【智能算法】人工大猩猩部队优化算法(GTO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2021年,B Abdollahzadeh等人受到大猩猩社会行为启发,提出了人工大猩猩部队优化算法(Artificial Gorilla Troops Optimizer, GTO)。 2.算法原理 2.1算…

小美的平衡矩阵(前缀和例题)

2024美团秋招,被这一题给难住了 美团校招笔试真题_Java工程师、C工程师_牛客网 题目: 解答: 这道题的关键点就是要计算出以某一点为矩阵右下角时,1的个数 我一开始是想着遍历,以某一点为起点(矩阵左上角&a…

Machine Learning机器学习之统计分析

目录 前言 机器学习之统计分析 统计学的主要目标包括: 统计学核心概念: 统计基础: 训练误差: 常见的损失函数: 正则化和交叉验证 博主介绍:✌专注于前后端、机器学习、人工智能应用领域开发的优质创作者、秉…

TBSI模型论文解读及代码分析

前往我的主页以获得更好的阅读体验 简介 论文来源: Bridging Search Region Interaction With Template for RGB-T Tracking 现有的搜索算法通常会直接连接 RGB 和 T 模态搜索区域, 该方法存在大量冗余背景噪声. 而另一些方法从搜索帧中采样候选框, 对孤立的 RGB 框和 T 框进…

RISC-V特权架构 - 中断定义

RISC-V特权架构 - 中断定义 1 中断类型1.1 外部中断1.2 计时器中断1.3 软件中断1.4 调试中断 2 中断屏蔽3 中断等待4 中断优先级与仲裁5 中断嵌套6 异常相关寄存器 本文属于《 RISC-V指令集基础系列教程》之一,欢迎查看其它文章。 1 中断类型 RISC-V 架构定义的中…

Autodesk Maya 2025---智能建模与动画创新,重塑创意工作流程

Autodesk Maya 2025是一款顶尖的三维动画软件,广泛应用于影视广告、角色动画、电影特技等领域。新版本在功能上进行了全面升级,新增了对Apple芯片的支持,建模、绑定和角色动画等方面的功能也更加出色。 在功能特色方面,Maya 2025…

RabbitMQ安装及使用笔记

RabbitMQ安装及使用笔记 RabbitMQ是一个开源的消息代理软件,它实现了高级消息队列协议(AMQP),用于在分布式系统中进行消息传递。 1.安装 利用docker load命令加载mq镜像 docker load -i mq.tar 基于Docker来安装RabbitMQ&#xff…

网络空间测绘系统的商业应用

随着网络空间的不断发展和扩展,网络安全已经成为当今社会面临的重要挑战之一。为了有效应对网络安全威胁,网络空间测绘系统应运而生,成为网络安全领域的重要工具。 网络空间测绘系统不仅能够帮助安全研究人员进行研究和管理,还能为…

3.28总结

1.java学习记录 1.方法的重载 重载换而言之其实就是函数名不变,但是其中的参数需要改变,可以三个方面改变(参数类型,参数顺序,参数个数这三个方面入手,这样可以运用的) 但是:注意…

边缘计算AI盒子目前支持的AI智能算法、视频智能分析算法有哪些,应用于大型厂矿安全生产风险管控

一、前端设备实现AI算法 主要是基于安卓的布控球实现,已有的算法包括: 1)人脸;2)车牌;3)是否佩戴安全帽;4)是否穿着工装; 可以支持定制开发 烟雾&#xf…

API是什么,如何保障API安全

随着移动APP、微服务架构、云、物联网的兴起,企业API数量呈爆发式增长。作为数字世界的连接者,API为企业搭建起了一条内外相连、四通八达的“数据公路”。 API是什么?API,全称Application Programming Interface,即应用…

黑马头条知识点总结

黑马头条知识点总结 文章目录 黑马头条知识点总结前言一、使用的所有技术栈二、初始化项目 2.1加密盐登录2.2网关2.3配置nginx三。文章通过freemarker生成html文件存入minio中四。内容安全阿里云接口5.使用延迟任务发布审核文章 4.9.3)redis分布式锁在工具类CacheService中添加…

CI/CD实战-jenkins结合ansible

配置主机环境 在jenkins上断开并删除docker1节点 重新给master添加构建任务 将server3,server4作为测试主机,停掉其上后面的docker 在server2(jenkins)主机上安装ansible 设置jenkins用户到目标主机的免密 给测试主机创建用户并…

数据结构:基于数组实现栈

1 前言 栈是一种先进后出的线性表。向一个栈插入新元素可以叫做进栈、入栈、压栈,新元素必须放到栈顶元素上面,使之成为新的栈顶;从一个栈删除元素可以叫做出栈、退栈,它将栈顶元素删除,使和原来栈顶元素相邻的元素称…

MySQL创建表:练习题

练习题: 创建一个名为"students"的数据库,并切换到该数据库。 在"students"数据库中创建一个名为"grades"的表,包含以下字段: id: 整数类型 name: 字符串类型,学生姓名 subject: 字符串…

代码随想录阅读笔记-二叉树【层序遍历相关题目】

1、二叉树的层次遍历II 题目 给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历) 思路 相比上个博客中的层序遍历,这里需要做的仅仅是把最后的result数组反…

QT中的 容器(container)简介

Qt库提供了一套通用的基于模板的容器类&#xff0c;可以用这些类存储指定类型的项。比如&#xff0c;你需要一个大小可变的QString的数组&#xff0c;则使用QVector<QString>。 这些容器类比STL&#xff08;C标准模板库&#xff09;容器设计得更轻量、更安全并且更易于使…