论文《Exploring to Prompt for Vision-Language Models》阅读

news2025/1/8 6:40:59

论文《Exploring to Prompt for Vision-Language Models》阅读

  • 论文概况
  • 论文动机(Intro)
  • Methodology
    • Preliminary
    • CoOp
      • [CLASS]位置
      • Context 是否跨 class 共享
      • 表示和训练
  • Experiments
    • Overall Comparison
    • Domain Generalization
    • Context Length (M) 和 backbone选择
    • 和 Prompt Ensembling的比较
    • 与精调模型进行比较
    • 可解释性
  • 总结

论文概况

今天带来的论文是《Exploring to Prompt for Vision-Language Models》,主题是基于CLIP的VLPT(Vision-Language Pre-Training)模型的提示学习(Prompt Learning),论文提出框架 CoOpContext Optimization),通过一个简单的提示向量自动学习的idea,完成了相当不错的结果。

论文由南洋理工S-Lab发表,发表在IJCV上(2022)。

论文地址:https://arxiv.org/abs/2109.01134
代码地址:https://github.com/KaiyangZhou/CoOp

论文动机(Intro)

诸如 CLIP 和 ALIGN 等 VLPT模型证明了这种 文本-图像对齐的大模型的巨大潜力。通过 提示 (Prompting),VLPT可以很好地用于下游任务。

提示学习的重要性:随随便便改动一下prompt,即使意思相同,模型的表现也会有很大的不同。如下图所示:
Illustration Example

a photo of [CLASS]
a photo of a [CLASS]

即使只是差一个“a”,在结果上也能体现出5个点左右的差异。
其余的观察:
(1)如加入描述性后缀,如“a type of flower”,“texture”,也会影响分类表现;
(2)加入描述性前缀也会影响推荐性能,如“a centered satellite photo”

基于上述观察,作者提出了CoOp,共包含两个implementations:

  • Unified Context,即针对不同的class使用同一套prompt,不单独进行区分
  • Class-specific Context,即针对单独的分类class单独一套prompt embedding

Methodology

Architecture

Preliminary

CLIP的大致流程:
text encoder(通常为Transformer)负责对文本进行编码(对于分类任务,具有多个分类class的文本,通过将其融入prompt,输入text encoder);
image encoder(通常为ResNet或ViT)负责对图片进行编码;
通过cosine对比相似度,完成下游的分类任务

这里统一介绍一下符号并介绍一下基本设置:

(1)prompt处理:对于模板“a photo of [CLASS]”,当前的label如果是“dog”,那么先替换进去,生成“a photo of dog”,在前面后面分别加上特殊标记token,生成“[SOS] a photo of dog [EOS]”,prompt最多容纳77个token(CLIP限制)。Transformer将其映射成512维的embedding,[EOS]作为整个prompt句子的代表被用于后续的对比(需要通过 Layer Normalization 操作和 Linear Projection Layer)

(2)Training: CLIP经历了共计 400 million个 高质量 图片-文本对的预训练过程

(3)Zero-Shot 推理:CLIP蕴含了大量的先验知识, f \mathbf{f} f 代表图片 x x x 的 encoding 向量,对于 K K K 个分类对应的prompt,CLIP 输出了 { w } i = 1 K \{\mathbf{w}\}_{i=1}^{K} {w}i=1K K K K 个 text encoding embedding。然后通过一个 softmax 进行相似度计算:

p ( y = i ∣ x ) = exp ⁡ ( cos ⁡ ( w i , f ) / τ ) ∑ j = 1 K exp ⁡ ( cos ⁡ ( w j , f ) / τ ) , p(y=i \mid \boldsymbol{x})=\frac{\exp \left(\cos \left(\boldsymbol{w}_{\boldsymbol{i}}, \boldsymbol{f}\right) / \tau\right)}{\sum_{j=1}^K \exp \left(\cos \left(\boldsymbol{w}_{\boldsymbol{j}}, \boldsymbol{f}\right) / \tau\right)}, p(y=ix)=j=1Kexp(cos(wj,f)/τ)exp(cos(wi,f)/τ),
其中, τ \tau τ 是温度系数,这个宏参一般还挺重要。

CoOp

事实上,CoOp 就只是把原来离散的 prompt (是指通过人手动输入)更改为一些需要学习的连续向量。形式上表现为以下格式:

[CLASS]位置

(1)放在末尾:

t = [ V ] 1 [   V ] 2 … [ V ] M [ C L A S S ] \boldsymbol{t}=[\mathrm{V}]_1[\mathrm{~V}]_2 \ldots[\mathrm{V}]_M[\mathrm{CLASS}] t=[V]1[ V]2[V]M[CLASS]

(2)放在中间:
t = [ V ] 1 … [ V ] M 2 [ C L A S S ] [ V ] M 2 + 1 … [ V ] M \boldsymbol{t}=[\mathrm{V}]_1 \ldots[\mathrm{V}]_{\frac{M}{2}}[\mathrm{CLASS}][\mathrm{V}]_{\frac{M}{2}+1} \ldots[\mathrm{V}]_M t=[V]1[V]2M[CLASS][V]2M+1[V]M

Context 是否跨 class 共享

(A)多个 class 共享一套参数,即:

[ V ] 1 i [   V ] 2 i … [ V ] M i = [ V ] 1 j [   V ] 2 j … [ V ] M j [\mathrm{V}]_1^i[\mathrm{~V}]_2^i \ldots[\mathrm{V}]_M^i = [\mathrm{V}]_1^j[\mathrm{~V}]_2^j \ldots[\mathrm{V}]_M^j [V]1i[ V]2i[V]Mi=[V]1j[ V]2j[V]Mj
其中 i ≠ j i \neq j i=j and i , j ∈ { 1 , … , K } i, j \in\{1, \ldots, K\} i,j{1,,K}.

这种叫做 Unified Context;

(B)不同 class 不共享,单独一套embedding,即:

[ V ] 1 i [   V ] 2 i … [ V ] M i ≠ [ V ] 1 j [   V ] 2 j … [ V ] M j [\mathrm{V}]_1^i[\mathrm{~V}]_2^i \ldots[\mathrm{V}]_M^i \neq[\mathrm{V}]_1^j[\mathrm{~V}]_2^j \ldots[\mathrm{V}]_M^j [V]1i[ V]2i[V]Mi=[V]1j[ V]2j[V]Mj
其中 i ≠ j i \neq j i=j and i , j ∈ { 1 , … , K } i, j \in\{1, \ldots, K\} i,j{1,,K}.

这种叫做 Class-Specific Context (CSC)。

表示和训练

上述两个分别进行排列组合,得到 1A ; 1B; 2A; 2B 四种格式,用于后面实验进行分析。

针对不同的 class 进行相似度比照:

p ( y = i ∣ x ) = exp ⁡ ( cos ⁡ ( g ( t i ) , f ) / τ ) ∑ j = 1 K exp ⁡ ( cos ⁡ ( g ( t j ) , f ) / τ ) p(y=i \mid \boldsymbol{x})=\frac{\exp \left(\cos \left(g\left(\boldsymbol{t}_i\right), \boldsymbol{f}\right) / \tau\right)}{\sum_{j=1}^K \exp \left(\cos \left(g\left(\boldsymbol{t}_j\right), \boldsymbol{f}\right) / \tau\right)} p(y=ix)=j=1Kexp(cos(g(tj),f)/τ)exp(cos(g(ti),f)/τ)

通过 cross-entropy 计算分类损失,通过梯度传播更新提到的 { [ V ] 1 i [   V ] 2 i … [ V ] M i } i = 1 K \{[\mathrm{V}]_1^i[\mathrm{~V}]_2^i \ldots[\mathrm{V}]_M^i\}_{i=1}^{K} {[V]1i[ V]2i[V]Mi}i=1K

Experiments

这部分简要介绍结果,不再过多赘述

Overall Comparison

Overall Performance Comparison
整体上来讲,CoOp表现随着 k-shot 中 k 的提高性能不断提高,且基本能够超过 zero-shot 的 CLIP 的表现,一开始比不过应该也正常,毕竟 embedding 还没学到什么东西;在OxfordPets和Food101上不太理想,作者推测是数据集质量不太高;另外,unified基本好过CSC(大部分情况,也有例外)。

具体提高统计为:
Improvement
如上所说,Food101表现失准。

Domain Generalization

可迁移性,分别通过在 ImageNet 上训练,并在相关的 ImageNetV2,ImageNet-Sketch,ImageNet-A,ImageNet-R 数据集上进行测试,结果如下:
Domain Generalization

Context Length (M) 和 backbone选择

Performance w.r.t M and backbone
基本上, M = 8 M=8 M=8 或者 M = 16 M=16 M=16 效果较好;
ViT-B/16 作为 图像编码器 效果更好些。

和 Prompt Ensembling的比较

Prompt Ensembling 就是将 好几个 prompt 对应的分类器进行组合,从而用于提高分类效果。
结果如下:
Comparisions with Prompt Ensembling

与精调模型进行比较

Comparisons with Fine-Tuning
CoOp表现好于其他精调结果,而且精调结果提升不大,退步反而不小。

可解释性

作者在语义空间中,通过比较相似性(欧氏距离),找到与最终任务最相关的 token,看看有没有语义上的可解释性。

Interpretability

总结

本文提出了 CoOp, 一个针对 CLIP 的 Prompt Learning 方法,方法简单但是有效。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1551898.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RAFT:让大型语言模型更擅长特定领域的 RAG 任务

RAFT(检索增强的微调)代表了一种全新的训练大语言模型(LLMs)以提升其在检索增强生成(RAG)任务上表现的方法。“检索增强的微调”技术融合了检索增强生成和微调的优点,目标是更好地适应各个特定领…

解决 vue activited 无效问题

当对页面APP.vue组件router-view标签使用了keep-alive之后在组件activated状态时不会发送请求,这时需要使用 keep-alive标签的 exclude属性排除需要重新发送请求的组件。需要注意exclude的值要和组件本身的name值要一致,如果不一致就会不生效。目前我出现…

MySQL 日志:undo log、redo log、binlog 有什么用?

资料来源 : 小林coding 小林官方网站 : 小林coding (xiaolincoding.com) 从这篇「执行一条 SQL 查询语句,期间发生了什么? (opens new window)」中,我们知道了一条查询语句经历的过程,这属于「读」一条记录的过程,如下…

分布式处理

前言 大家好,我是jiantaoyab,这是我作为学习笔记原理篇的最后一章,一台计算机在数据中心里是不够的。因为如果只有一台计算机,我们会遇到三个核心问题。第一个核心问题,叫作垂直扩展和水平扩展的选择问题,…

ThreadPool-线程池使用及原理

1. 线程池使用方式 示例代码: // 一池N线程 Executors.newFixedThreadPool(int) // 一个任务一个任务执行,一池一线程 Executors.newSingleThreadExecutorO // 线程池根据需求创建线程,可扩容,遇强则强 Executors.newCachedThre…

MrDoc寻思文档 个人wiki搭建

通过Docker快速搭建个人wiki,开源wiki系统用于知识沉淀,教学管理,技术学习 部署步骤 ## 拉取 MrDoc 代码 ### 开源版: git clone https://gitee.com/zmister/MrDoc.git### 专业版: git clone https://{用户名}:{密码…

CXL技术市场概览

在2019年,Intel主导联合多家阿里巴巴、Facebook(也就是改名后Meta)、谷歌、Dell、华为、思科、微软、HPE最初的八巨头,发布了新的互联协议CXL,全称Comupte Express Link。由于在服务器领域享有绝对领导地位,Intel一经号令&#xf…

【Linux】 centos7安装卸载SQL server(2017、2019)

一、安装配置 准备一个基础Linux配置: 内存为20GB 运行内存为2GB的系统(数据库小于2GB安装不了) 1、网络配置 我们需要进行网络的连接 进入 cd /ect/sysconfig/network-script/ 编辑文件ifcfg-ens33 vi ifcfg-ens33 Insert键进行编辑 把ONBOO…

软件设计师24--概念设计阶段

软件设计师24--概念设计阶段 考点1:概念设计过程考点2:E-R图属性E-R模型-联系类型判断例题:E-R模型-联系类型判断扩充的E-R模型 考点1:概念设计过程 需求分析 --> 抽象数据 --> 设计局部ER模型 --> 合并局部模型消除冲突…

为什么Python不适合写游戏?

知乎上有热门个问题:Python 能写游戏吗?有没有什么开源项目? Python可以开发游戏,但不是好的选择 Python作为脚本语言,一般很少用来开发游戏,但也有不少大型游戏有Python的身影,比如&#xff1…

域环境共享文件夹,容量配额管理

首先,我们先创建一个新的磁盘,必须在服务器关机的状态下创建,只有在关机状态下才能创建NVMe类型的磁盘。 打开此电脑,右击创建的磁盘,点击属性。 点击共享,点击高级共享。 将共享此文件夹勾选上&#xff0c…

腾讯云服务器新购、续费、升级如何领取优惠券?

腾讯云作为国内领先的云计算服务提供商,一直致力于为用户提供高效、稳定、安全的云服务。为了吸引广大用户上云,腾讯云经常推出各种优惠活动,其中就包括服务器新购、续费、升级的优惠券。本文将为大家详细介绍如何领取腾讯云服务器优惠券&…

阎淑萍:老母猪戴口罩还挺重视这张老脸啊,赵本山:我也相当副科级呀!

阎淑萍:老母猪戴口罩还挺重视这张老脸啊,赵本山:我也相当副科级呀! ——小品《老拜年》(上)的台词 《老拜年》 是赵本山、阎淑萍、王中青、苏杰在《1993年中央电视台春节联欢晚会》上表演的小品&#xff0…

智能车主控板原理图原理讲解

智能车主控板原理图原理讲解 综述:本篇文章对智能车主控板的一部分电路进行原理分析,文末附加整体原理图。 1. 电源电路 (1)通过外接电池供电并通过电源模块电路,运用稳压芯片lm2940,将电源电压转化为5V…

JUC内容概述

复习概念 Sleep和Wait的区别 Sleep是Thread的静态方法,wait是Object的方法,任何对象实例都可以使用sleep不会释放锁,他也不需要占用锁,暂停。wait会释放锁,但是调用他的前提是线程占有锁他们都可以被Interrupted方法…

构建一个包含mvn命令的Java 17基础镜像

前言 官方提供的openjdk基础镜像,不包含mvn命令,无法用容器来打包代码。 在官方提供的镜像基础上安装maven。 前期准备,需要安装好docker。 一、安装maven 1、下载openjdk基础镜像,执行如下代码。 docker pull openjdk:17-j…

Git命令上传本地项目至github

记录如何创建个人仓库并上传已有代码至github in MacOS环境 0. 首先下载git 方法很多 这里就不介绍了 1. Github Create a new repository 先在github上创建一个空仓库,用于一会儿链接项目文件,按照自己的需求设置name和是否private 2.push an exis…

iOS客户端自动化UI自动化airtest+appium从0到1搭建macos+脚本设计demo演示+全网最全最详细保姆级有步骤有图

Android客户端自动化UI自动化airtest从0到1搭建macos脚本设计demo演示全网最全最详细保姆级有步骤有图-CSDN博客 避坑系列-必读: 不要安装iOS-Tagent ,安装appium -这2个性质其实是差不多的都是为了安装wda。注意安装appium最新版本,安装完…

Mysql的日志管理,备份与回复

目录 一、Mysql日志管理 1、日志的默认位置及配置文件 2、日志分类 2.1错误日志 2.2通用查询日志 2.3二进制日志 2.4慢查询日志 2.5中继日志 3、日志配置 4、日志查询 4.1查询通用日志是否开启 4.2查询二进制日志是否开启 4.3查看慢查询日志是否开启 4.4查询慢查…

损坏的RAID5csp

1.解题思路 这道题太抽象了&#xff0c;一开始都没太搞懂在讲啥。。。解决该题需要了解条带、磁盘号的定义。 下图以样例2&#xff0c;输入编号为5的块为例&#xff1a; 请务必加上ios::sync_with_stdio(false),否则会超时只有30分 2.满分代码 #include<iostream> us…