使用LangChain LCEL生成RAG应用、使用LangChain TruLens对抗RAG幻觉

news2024/11/15 1:50:56
# 导入LangChain的库
from langchain import *

# 加载数据源
loader = WebBaseLoader()
doc = loader.load("https://xxx.html")

# 分割文档对象
splitter = RecursiveCharacterTextSplitter(max_length=512)
docs = splitter.split(doc)

# 转换文档对象为嵌入,并存储到向量存储器中
embedder = OpenAIEmbeddings()
vector_store = ChromaVectorStore()
for doc in docs:
    embedding = embedder.embed(doc.page_content)
    vector_store.add(embedding, doc)

# 创建检索器
retriever = VectorStoreRetriever(vector_store, embedder)

# 创建聊天模型
prompt = hub.pull("rlm/rag-prompt")
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)

# 创建一个问答应用
def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)


rag_chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)

# 启动应用
rag_chain.invoke("What is main purpose of xxx.html?")

LangChain提供了一种专门的表达式语言,叫做LCEL(LangChain Expression Language),它可以让你用简洁和灵活的语法来定义和操作Chain。

LCEL语法基础

LCEL是一个用于构建复杂链式组件的语言,它支持流式处理、并行化、日志记录等功能。LCEL的基本语法规则是使用|符号将不同的组件连接起来,形成一个链式结构。|符号类似于Unix的管道操作符,它将一个组件的输出作为下一个组件的输入,从而实现数据的传递和处理。

为什么要用LCEL?

LCEL语法的核心思想是:一切皆为对象,一切皆为链。这意味着,LCEL语法中的每一个对象都实现了一个统一的接口:Runnable,它定义了一系列的调用方法(invoke, batch, stream, ainvoke, …)。这样,你可以用同样的方式调用不同类型的对象,无论它们是模型、函数、数据、配置、条件、逻辑等等。而且,你可以将多个对象链接起来,形成一个链式结构,这个结构本身也是一个对象,也可以被调用。这样,你可以将复杂的功能分解成简单的组件,然后用LCEL语法将它们组合起来,形成一个完整的应用。

LCEL语法还提供了一些组合原语,让你可以更灵活地控制链式结构的行为,例如:

  • 并行化:你可以使用parallel原语将多个对象并行执行,提高效率和性能。
  • 回退:你可以使用fallback原语为某个对象指定一个备选对象,当主对象执行失败时,自动切换到备选对象,保证应用的可用性和稳定性。
  • 动态配置:你可以使用config原语为某个对象指定一个配置对象,根据运行时的输入或条件,动态地修改对象的参数或属性,增加应用的灵活性和适应性。

TruLens

TruLens是面向神经网络应用的质量评估工具,它可以帮助你使用反馈函数来客观地评估你的基于LLM(语言模型)的应用的质量和效果。反馈函数可以帮助你以编程的方式评估输入、输出和中间结果的质量,从而加快和扩大实验评估的范围。你可以将它用于各种各样的用例,包括问答、检索增强生成和基于代理的应用。

TruLens的核心思想是,你可以为你的应用定义一些反馈函数,这些函数可以根据你的应用的目标和期望,对你的应用的表现进行打分或分类。例如:

  • 定义一个反馈函数来评估你的问答应用的输出是否与问题相关,是否有依据,是否有用。
  • 定义一个反馈函数来评估你的检索增强生成应用的输出是否符合语法规则,是否有创造性,是否有逻辑性。
  • 定义一个反馈函数来评估你的基于代理的应用的输出是否符合道德标准,是否有友好性,是否有诚实性。

TruLens可以让你在开发和测试你的应用的过程中,实时地收集和分析你的应用的反馈数据,从而帮助你发现和解决你的应用的问题,提高你的应用的质量和效果。你可以使用TruLens提供的易用的用户界面,来查看和比较你的应用的不同版本的反馈数据,从而找出你的应用的优势和劣势,以及改进的方向。

# 导入LangChain和TruLens
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import ChatPromptTemplate,HumanMessagePromptTemplate
from trulens_eval import TruChain,Feedback, Huggingface, Tru, OpenAI as TruOpenAI
from trulens_eval.feedback.provider.langchain import Langchain

tru = Tru()

# 定义一个问答应用的提示模板
full_prompt = HumanMessagePromptTemplate(
    prompt=PromptTemplate(
        template=
        "Provide a helpful response with relevant background information for the following: {prompt}",
        input_variables=["prompt"],
    )
)

chat_prompt_template = ChatPromptTemplate.from_messages([full_prompt])


# 创建一个LLMChain对象,使用llm和chat_prompt_template作为参数
llm = OpenAI()
chain = LLMChain(llm=llm, prompt=chat_prompt_template, verbose=True)


# Initialize Huggingface-based feedback function collection class:
# Define a language match feedback function using HuggingFace.
hugs = Huggingface()
f_lang_match = Feedback(hugs.language_match).on_input_output()
# Question/answer relevance between overall question and answer.
provider = TruOpenAI()
f_qa_relevance = Feedback(provider.relevance).on_input_output()

# 使用TruChain类来包装chain对象,指定反馈函数和应用ID
tru_recorder = TruChain(
    chain,
    app_id='Chain1_QAApplication',
    feedbacks=[f_lang_match,f_qa_relevance])


# 使用with语句来运行chain对象,并记录反馈数据
with tru_recorder as recording:
    # 输入一个问题,得到一个回答
    chain("What is langchain?")
    # 查看反馈数据
    tru_record = recording.records[0]
    # 打印反馈数据
    print("tru_record:",tru_record)
# 启动tru展示控制台
tru.run_dashboard()

为了评估RAG的质量和效果,可以使用TruLens提供的RAG三角形(RAG Triad)的评估方法。RAG三角形是由三个评估指标组成的,分别是:

  • 上下文相关性(Context Relevance):评估输入和检索出的文档之间的相关性,以及文档之间的一致性。上下文相关性越高,说明检索系统越能找到与输入匹配的知识和信息,从而为LLM提供更好的上下文。
  • 有根据性(Groundedness):评估输出和检索出的文档之间的一致性,以及输出的可信度。有根据性越高,说明LLM越能利用检索出的文档来生成有依据的输出,从而避免产生幻觉或错误。
  • 答案相关性(Answer Relevance):评估输出和输入之间的相关性,以及输出的有用性。答案相关性越高,说明LLM越能理解输入的意图和需求,从而生成有用的输出,满足用户的目的。

RAG三角形的评估方法可以让我们从不同的角度来检验RAG的质量和效果,从而发现和改进RAG的问题。我们可以使用TruLens来实现RAG三角形的评估方法,具体步骤如下:

  1. 在LangChain中,创建一个RAG对象,使用RAGPromptTemplate作为提示模板,指定检索系统和知识库的参数。
  2. 在TruLens中,创建一个TruChain对象,包装RAG对象,指定反馈函数和应用ID。反馈函数可以使用TruLens提供的f_context_relevance, f_groundness, f_answer_relevance,也可以自定义。
  3. 使用with语句来运行RAG对象,并记录反馈数据。输入一个问题,得到一个回答,以及检索出的文档。
  4. 查看和分析反馈数据,根据RAG三角形的评估指标,评价RAG的表现。

下面是一个简单的示例,展示了如何在LangChain中使用TruLens来评估一个RAG问答应用:

# 导入LangChain和TruLens
from IPython.display import JSON

# Imports main tools:
from trulens_eval import TruChain, Feedback, Huggingface, Tru
from trulens_eval.schema import FeedbackResult
tru = Tru()
tru.reset_database()

# Imports from langchain to build app
import bs4
from langchain import hub
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import WebBaseLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.schema import StrOutputParser
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain_core.runnables import RunnablePassthrough
from trulens_eval.feedback.provider import OpenAI
import numpy as np
from trulens_eval.app import App
from trulens_eval.feedback import Groundedness


# 加载文件
loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
docs = loader.load()
# 分词
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
# 存入到向量数据库
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings(
))
# 定义一个RAG Chain

retriever = vectorstore.as_retriever()

prompt = hub.pull("rlm/rag-prompt")
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

rag_chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)
# 使用TruChain类来包装rag对象,指定反馈函数和应用ID
# Initialize provider class
provider = OpenAI()
# select context to be used in feedback. the location of context is app specific.
context = App.select_context(rag_chain)
grounded = Groundedness(groundedness_provider=provider)
# f_context_relevance, f_groundness, f_answer_relevance 定义反馈函数
# Define a groundedness feedback function
f_groundedness = (
    Feedback(grounded.groundedness_measure_with_cot_reasons)
    .on(context.collect()) # collect context chunks into a list
    .on_output()
    .aggregate(grounded.grounded_statements_aggregator)
)

# Question/answer relevance between overall question and answer.
f_qa_relevance = Feedback(provider.relevance).on_input_output()
# Question/statement relevance between question and each context chunk.
f_context_relevance = (
    Feedback(provider.qs_relevance)
    .on_input()
    .on(context)
    .aggregate(np.mean)
    )
# 使用with语句来运行rag对象,并记录反馈数据
tru_recorder = TruChain(rag_chain,
    app_id='Chain1_ChatApplication',
    feedbacks=[f_qa_relevance, f_context_relevance, f_groundedness])

with tru_recorder as recording:
    # 输入一个问题,得到一个回答,以及检索出的文档
    llm_response = rag_chain.invoke("What is Task Decomposition?")
    # 查看反馈数据
    rec = recording.get() # use .get if only one record
    # 打印反馈数据
    print(rec)
# 启动tru展示控制台
tru.run_dashboard()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1549304.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

3d放上模型为什么渲染不出来---模大狮模型网

如果在3D软件中放置模型后无法正确渲染出来,可能有几个常见的原因导致这种情况发生: 材质设置问题:确保所放置的模型具有正确的材质和纹理,并且材质设置正确。如果材质设置有误,可能会导致模型无法正确显示。 光照设置…

BaseDao封装JavaWeb的增删改查

目录 什么是BaseDao? 为什么需要BaseDao? BaseDao的实现逻辑 什么是BaseDao? Basedao 是一种基于数据访问对象(Data Access Object)模式的设计方法。它是一个用于处理数据库操作的基础类,负责封装数据库…

大模型论文阅读:ADAPTIVE BUDGET ALLOCATION FOR PARAMETEREFFICIENT FINE-TUNING

大模型论文阅读:ADAPTIVE BUDGET ALLOCATION FOR PARAMETEREFFICIENT FINE-TUNING 论文链接:https://arxiv.org/pdf/2303.10512v1.pdf 当存在大量下游任务时,微调所有预训练模型的参数变得不可行。因此,为了以参数高效的方式学习预训练权重的增量更新,提出了许多微调方法,…

【Linux】进程状态(R运行状态、S睡眠状态、D磁盘休眠状态、T停止状态、X死亡状态)

目录 01.运行状态 02.睡眠状态 03.磁盘睡眠状态 04.停止状态 05.死亡状态 进程的状态会随着操作系统的调度和外部事件的发生而不断地发生转换。例如,一个新创建的进程经过初始化后会进入就绪态,等待被调度执行;当调度器分配处理器资源给…

AI+云平台|全闪云底座迎战

AI融万物之势席卷而来 人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 行业特点 AI场景中80%以上是小文件,以非结构化数据为…

maya导入导出bvh 自动 脚本

目录 maya打开脚本编辑器 运行打开bvh脚本 maya导出bvh脚本 maya打开脚本编辑器 打开Maya软件,点击右下角 “脚本编辑器” 运行打开bvh脚本<

一款比 K8S 更好用的编排工具——Nomod 单机部署

上下文 最近公司需要调研类似 EMCHub 这样支持算力共享的服务。第一直觉是使用 K8S 或 K3S&#xff0c;作为 CNCF 孵化的顶级项目&#xff0c;同时也是当前云原生生态使用最广的编排系统。但是在学习 EMC Hub 源码过程中&#xff0c;偶然发现它是基于 Nomad 做的集群管理。 相…

如何清理释放群晖客户端缓存?

任正菲说&#xff1a;企业最大的浪费&#xff0c;是经验的浪费&#xff01; 而一个一个的经验&#xff0c;又都来自企业的每一个工作者。 因此当我们在工作过程中遇到一些问题时&#xff0c;我们就应该下意识的把解决问题的经验沉淀下来&#xff0c;从而可以与大家进行分享。…

耳目一新的滑块版登录注册界面~

又到了毕业季&#xff0c;大家做毕设的时候总会参考已有的案例&#xff0c;不过大多产品的样式非常单一雷同。本帖博主给大家分享一个比较别树一帜的登录界面&#xff0c;如下&#xff1a; 如果没有账号&#xff0c;点击“去注册”&#xff0c;则会产生如下的效果&#xff1a; …

django orm DateTimeField 6位小数精度问题

from django.db.backends.mysql.base import DatabaseWrapperDatabaseWrapper.data_types[DateTimeField] "datetime"意思就是重写源码里面的DateTimeField字段

如何在家中使用手机平板电脑 公司iStoreOS软路由实现远程桌面

文章目录 简介一、配置远程桌面公网地址二、家中使用永久固定地址 访问公司电脑**具体操作方法是&#xff1a;** 简介 软路由是PC的硬件加上路由系统来实现路由器的功能&#xff0c;也可以说是使用软件达成路由功能的路由器。 使用软路由控制局域网内计算机的好处&#xff1a…

C++ 控制语句(一)

一 顺序结构 程序的基本结构有三种&#xff1a; 顺序结构、分支结构、循环结构 大量的实际问题需要通过各种控制流程来解决。 1.1 顺序结构 1.2 简单语句和复合语句 二 循环 2.1 for循环 语句流程图 注意&#xff1a;使用for语句的灵活性 三 while语句 四 do while语句

线程 和 进程详解——以Java为例

一、概念 线程 线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中&#xff0c;是进程中的实际运作单位。 简单理解&#xff1a;应用软件中互相独立&#xff0c;可以同时运行的功能 进程 进程是程序的基本执行实体。 多线程中的两个概念&#xff1a;并发和并行…

鸿蒙OS开发实例:【工具类封装-emitter组件间通信】

import Emitter from ohos.events.emitter; import pasteboard from ohos.pasteboard; MyEmitterUtil 是一个针对 HarmonyOS 的事件驱动编程封装类&#xff0c;主要用于组件间的通信和数据传递。 使用要求&#xff1a; DevEco Studio 3.1.1 Release 或更高版本API 版本&…

vue3+threejs新手从零开发卡牌游戏(十六):初始化对方手牌

添加对方手牌区时注意位置调整&#xff0c;以及手牌应该是背面朝上&#xff0c;加个rotateX翻转即可&#xff0c;其他代码和p1.vue代码一致&#xff0c;game/hand/p2.vue代码如下&#xff1a; <template><div></div> </template><script setup lan…

C++:关键字(4)

在c中的关键字就是我们各个写的各种代码 这些就是关键字&#xff0c;这些东西是无法当参数的&#xff0c;比如在给变量名设置为int那就不行 这就是个错的 在写其他的参数时候&#xff0c;不可以使用关键词作为参数

Vue 与 React:前端框架对比分析

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

C语言程序编译与链接(拓宽视野的不二之选)

文章目录 翻译环境和运行环境翻译环境预处理编译汇编链接 运行环境 翻译环境和运行环境 1&#xff0c;在ANSI C的任何⼀种实现中&#xff0c;存在两个不同的环境。 第1种是翻译环境&#xff0c;在这个环境中源代码被转换为可执⾏的机器指 令&#xff08;⼆进制指令&#…

AI Agent(LLM Agent)入门解读

1. 什么是AI Agent&#xff1f; AI Agent可以理解为一个智能体&#xff0c;包括感知模块、规划决策模块和行动模块&#xff0c;类似于人类的五官、大脑和肢体。它能帮助人类处理复杂的任务&#xff0c;并能根据环境反馈进行学习和调整。 五官可以理解为感知模块&#xff0c;大…

2024年上半年数学建模竞赛一览表(附赠12场竞赛的优秀论文+格式要求)[电工、妈杯、数维、五一等12场]

为了帮助大家更好地备战今年上半年十二场数学建模竞赛&#xff0c;我们为大家收集到了这十二场相关竞赛的优秀论文以及格式要求&#xff0c;具体内容如下所示。 资料获取 在文末 文中资料来源 名称竞赛官方网站天府杯https://www.tfmssy.org.cn/认证杯http://www.tzmcm.cn/i…