【小沐学AI】智谱AI大模型的一点点学习(Python)

news2024/11/16 3:34:28

文章目录

  • 1、简介
    • 1.1 大模型排行榜
  • 2、智谱AI
    • 2.1 GLM
      • 2.1.1 模型简介
      • 2.1.2 开源代码
        • 2.1.2.1 GLM-130B
    • 2.2 ChatGLM
      • 2.2.1 模型简介
      • 2.2.2 开源代码
        • 2.2.2.1 ChatGLM
        • 2.2.2.2 ChatGLM2
        • 2.2.2.3 ChatGLM3
    • 2.3 CodeGeeX
      • 2.3.1 模型简介
      • 2.3.2 开源代码
    • 2.4 CogView
      • 2.4.1 模型简介
      • 2.4.2 开源代码
    • 2.5 CogVideo
      • 2.5.1 模型简介
      • 2.5.2 开源代码
  • 结语

1、简介

1.1 大模型排行榜

https://rank.opencompass.org.cn/home
202年1月30日,大模型开源开放评测体系司南(OpenCompass2.0)正式发布,旨在为大语言模型、多模态模型等各类模型提供一站式评测服务。
在这里插入图片描述

2、智谱AI

https://maas.aminer.cn/
https://open.bigmodel.cn/
在这里插入图片描述
GLM 全名 General Language Model ,是一款基于自回归填空的预训练语言模型。ChatGLM 系列模型,支持相对复杂的自然语言指令,并且能够解决困难的推理类问题。该模型配备了易于使用的 API 接口,允许开发者轻松将其融入各类应用,广泛应用于智能客服、虚拟主播、聊天机器人等诸多领域。

2.1 GLM

基于领先的千亿级多语言、多模态预训练模型,打造高效率、通用化的“模型即服务”AI开发新范式
全面升级的新一代基座大模型GLM-4,整体性能相比GLM3提升60%,支持128K上下文,可根据用户意图自主理解和规划复杂指令、完成复杂任务。

2.1.1 模型简介

在这里插入图片描述

  • GLM-4
    模型编码:glm-4
    根据输入的自然语言指令完成多种语言类任务,推荐使用 SSE 或异步调用方式请求接口
from zhipuai import ZhipuAI
client = ZhipuAI(api_key="") # 填写您自己的APIKey
response = client.chat.completions.create(
    model="glm-4",  # 填写需要调用的模型名称
    messages=[
        {"role": "user", "content": "作为一名营销专家,请为我的产品创作一个吸引人的slogan"},
        {"role": "assistant", "content": "当然,为了创作一个吸引人的slogan,请告诉我一些关于您产品的信息"},
        {"role": "user", "content": "智谱AI开放平台"},
        {"role": "assistant", "content": "智启未来,谱绘无限一智谱AI,让创新触手可及!"},
        {"role": "user", "content": "创造一个更精准、吸引人的slogan"}
    ],
)
print(response.choices[0].message)
  • GLM-4V
    模型编码:glm-4v
    根据输入的自然语言指令和图像信息完成任务,推荐使用 SSE 或同步调用方式请求接口
from zhipuai import ZhipuAI
client = ZhipuAI(api_key="") # 填写您自己的APIKey
response = client.chat.completions.create(
    model="glm-4v",  # 填写需要调用的模型名称
    messages=[
       {
        "role": "user",
        "content": [
          {
            "type": "text",
            "text": "图里有什么"
          },
          {
            "type": "image_url",
            "image_url": {
                "url" : "https://img1.baidu.com/it/u=1369931113,3388870256&fm=253&app=138&size=w931&n=0&f=JPEG&fmt=auto?sec=1703696400&t=f3028c7a1dca43a080aeb8239f09cc2f"
            }
          }
        ]
      }
    ]
)
print(response.choices[0].message)

  • GLM-3-Turbo
    模型编码:glm-3-turbo
    根据输入的自然语言指令完成多种语言类任务,推荐使用 SSE 或异步调用方式请求接口
from zhipuai import ZhipuAI
client = ZhipuAI(api_key="") # 填写您自己的APIKey
response = client.chat.completions.create(
    model="glm-3-turbo", # 填写需要调用的模型名称
    messages=[
        {"role": "user", "content": "作为一名营销专家,请为我的产品创作一个吸引人的slogan"},
        {"role": "assistant", "content": "当然,为了创作一个吸引人的slogan,请告诉我一些关于您产品的信息"},
        {"role": "user", "content": "智谱AI开放平台"},
        {"role": "assistant", "content": "智启未来,谱绘无限一智谱AI,让创新触手可及!"},
        {"role": "user", "content": "创造一个更精准、吸引人的slogan"}
    ],
)
print(response.choices[0].message)

2.1.2 开源代码

2.1.2.1 GLM-130B

https://github.com/THUDM/GLM
https://models.aminer.cn/glm-130b/
https://github.com/THUDM/GLM-130B

GLM-130B: An Open Bilingual Pre-Trained Model (ICLR 2023)

GLM-130B 是一个开源开放的双语(中文和英文)双向稠密模型,拥有 1300 亿参数,模型架构采用通用语言模型(GLM1)。它旨在支持在一台 A100(40G * 8) 或 V100(32G * 8)服务器上对千亿规模参数的模型进行推理。截至 2022 年 7 月 3 日,GLM-130B 已完成 4000 亿个文本标识符(中文和英文各 2000 亿)的训练。
在这里插入图片描述

[2023.03.14] 我们很高兴地推出基于 GLM-130B 的双语对话语言模型 ChatGLM,以及其开源版本 ChatGLM-6B,它只能在 6GB GPU 内存下运行!

2.2 ChatGLM

https://chatglm.cn/

基于GLM模型开发,支持多轮对话,具备内容创作、信息归纳总结等能力

2.2.1 模型简介

在这里插入图片描述

2.2.2 开源代码

2.2.2.1 ChatGLM

https://github.com/THUDM/ChatGLM-6B

ChatGLM-6B: An Open Bilingual Dialogue Language Model | 开源双语对话语言模型

新一代开源模型 ChatGLM3-6B 已发布,拥有10B以下最强的基础模型,支持工具调用(Function Call)、代码执行(Code Interpreter)、Agent 任务等功能。

ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。

ChatGLM-6B 权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。

硬件需求:

量化等级最低 GPU 显存(推理)最低 GPU 显存(高效参数微调)
FP16-(无量化)13 GB-14 GB
INT88 GB9 GB
INT46 GB7 GB
  • ChatGLM-6B

可以通过如下代码调用 ChatGLM-6B 模型来生成对话:

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
2.2.2.2 ChatGLM2

https://github.com/THUDM/ChatGLM2-6B

ChatGLM2-6B: An Open Bilingual Chat LLM | 开源双语对话语言模型

[2023/07/31] 发布 ChatGLM2-6B-32K 模型,提升对于长文本的理解能力。
[2023/07/25] 发布 CodeGeeX2 ,基于 ChatGLM2-6B 的代码生成模型。
[2023/06/25] 发布 ChatGLM2-6B,ChatGLM-6B 的升级版本

  • ChatGLM2-6B (base)
  • ChatGLM2-6B
  • ChatGLM2-12B (base)
  • ChatGLM2-12B

可以通过如下代码调用 ChatGLM2-6B 模型来生成对话:

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True, device='cuda')
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
2.2.2.3 ChatGLM3

https://github.com/THUDM/ChatGLM3

ChatGLM3 series: Open Bilingual Chat LLMs | 开源双语对话语言模型

ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上.

  • ChatGLM3-6B
  • ChatGLM3-6B-Base
  • ChatGLM3-6B-32K
  • ChatGLM3-6B-128K

可以通过如下代码调用 ChatGLM3 模型来生成对话:

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True, device='cuda')
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)

2.3 CodeGeeX

第二代CodeGeeX模型作为强大的AI编程助手,支持超过100种编程语言,具备代码生成与补全、续写、翻译、智能问答等能力。

2.3.1 模型简介

https://codegeex.cn/zh-CN
https://zhipu-ai.feishu.cn/wiki/CuvxwUDDqiErQUkFO2Tc4walnZY

在这里插入图片描述

CodeGeeX支持多种主流IDE,如VS Code、IntelliJ IDEA、PyCharm、Vim等,
同时,支持Python、Java、C++/C、JavaScript、Go等多种语言。
在这里插入图片描述

CodeGeeX是一款基于大模型的全能的智能编程助手。它可以实现代码的生成与补全、自动添加注释、代码翻译以及智能问答等功能,能够帮助开发者显著提高工作效率。CodeGeeX支持主流的编程语言,并适配多种主流IDE。

CodeGeeX插件对个人用户完全免费。
CodeGeeX面向企业提供CodeGeeX私有化部署服务。

2.3.2 开源代码

https://github.com/THUDM/CodeGeeX2

CodeGeeX2 是多语言代码生成模型 CodeGeeX (KDD’23) 的第二代模型。不同于一代 CodeGeeX(完全在国产华为昇腾芯片平台训练) ,CodeGeeX2 是基于 ChatGLM2 架构加入代码预训练实现。基于 ChatGLM2-6B 基座语言模型,CodeGeeX2-6B 进一步经过了 600B 代码数据预训练。

在这里插入图片描述

2.4 CogView

CogView模型,适用多种图像生成和增强任务,通过对用户文字描述快速、精准的理解,让AI的图像表达更加精确和个性化

在这里插入图片描述

2.4.1 模型简介

  • 使用价格
    在这里插入图片描述
  • Python 调用示例
from zhipuai import ZhipuAI
client = ZhipuAI(api_key="") # 请填写您自己的APIKey

response = client.images.generations(
    model="cogview-3", #填写需要调用的模型名称
    prompt="一只可爱的小猫咪",
)
print(response.data[0].url)

2.4.2 开源代码

https://github.com/THUDM/CogView
https://github.com/THUDM/CogView2

文本到图像生成。NeurIPS 2021 论文“CogView: Mastering Text-to-Image Generation via Transformers”的存储库。

在这里插入图片描述
硬件:建议使用配备 Nvidia A100 的 Linux 服务器。
论文 CogView2: Faster and Better Text-to-Image Generation via Hierarchical Transformers

在这里插入图片描述

2.5 CogVideo

2.5.1 模型简介

https://models.aminer.cn/cogvideo/
CogVideo是目前最大的通用领域文本到视频生成预训练模型,含94亿参数。CogVideo将预训练文本到图像生成模型(CogView2)有效地利用到文本到视频生成模型,并使用了多帧率分层训练策略。

2.5.2 开源代码

https://github.com/THUDM/CogVideo

文本到视频生成。ICLR023论文“CogVideo:“CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers”
在这里插入图片描述

结语

如果您觉得该方法或代码有一点点用处,可以给作者点个赞,或打赏杯咖啡;╮( ̄▽ ̄)╭
如果您感觉方法或代码不咋地//(ㄒoㄒ)//,就在评论处留言,作者继续改进;o_O???
如果您需要相关功能的代码定制化开发,可以留言私信作者;(✿◡‿◡)
感谢各位童鞋们的支持!( ´ ▽´ )ノ ( ´ ▽´)っ!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1548954.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【项目技术介绍篇】如何在本地运行若依项目

作者介绍:本人笔名姑苏老陈,从事JAVA开发工作十多年了,带过大学刚毕业的实习生,也带过技术团队。最近有个朋友的表弟,马上要大学毕业了,想从事JAVA开发工作,但不知道从何处入手。于是&#xff0…

Error: Cannot find module ‘@rollup/rollup-win32-x64-msvc‘

1.背景 新项目需要使用vite搭建一个v3项目,之前也弄过,但项目创建后却一直无法跑起来,大聪明的我一直没有注意到这个问题 2.解决步骤 方案1:删除node_modules和package-lock.json文件重新npm install下包,部分码农通过这个步骤可解决 方案2:node版本或者npm版本不对,或者没…

Redission 分布式锁原理分析

一、前言 我们先来说说分布式锁,为啥要有分布式锁呢? 像 JDK 提供的 synchronized、Lock 等实现锁不香吗?这是因为在单进程情况下,多个线程访问同一资源,可以使用 synchronized 和 Lock 实现;在多进程情况下&#xff…

SpringBoot 文件上传(二)

上一节讲解了如何利用MultipartFile接收浏览器端上传的文件: SpringBoot 文件上传(一)-CSDN博客 这节讲解服务器端如何将文件保存到本地目录下,下节讲解服务端如何将文件保存在阿里云上。 本节需要解决两个难点: 文件重名问题…

力扣---最长回文子串---二维动态规划

二维动态规划思路: 首先,刚做完这道题:力扣---最长有效括号---动态规划,栈-CSDN博客,所以会有一种冲动,设立g[i],表示以第i位为结尾的最长回文子串长度,然后再遍历一遍取最大长度即可…

【PLC】PROFIBUS(二):总线协议DP、PA、FMS

1、总线访问协议 (FDL) 1.1、多主通信 多个主设备间,使用逻辑令牌环依次向从设备发送命令。 特征: 主站间使用逻辑令牌环、主从站间使用主从协议主站在一个限定时间内 (Token Hold Time) 对总线有控制权从站只是响应一个主站的请求它们对总线没有控制…

三轴工作台激光焊接机:实现高精度、高效率焊接的新选择

三轴工作台激光焊接机是一种先进的焊接设备,结合了激光焊接技术与三轴工作台的运动控制,实现了焊接过程的高效、精准与自动化。这种设备主要利用激光束的高能量密度和高速度特性,使工件在熔化的同时快速冷却凝固,从而达到高质量的…

n-皇后问题(DFS深搜两种解法)

题目描述: 思路: 根据题目要求:即任意两个皇后都不能处于同一行、同一列或同一斜线上。我们可以画图去看一下。对角线之间有什么规律可以发掘出来。接下来请看图解 根据上述图片,我们可以把正对角线看成撇对角线,也就…

分享300套常用的多行业商城模板和电商模板

小程序商城模板平台!免费用多行业商城模板和电商模板,含小程序商城模板,多款精美高端电商模板免费使用,注册即用免费电商模板开发在线商城。 https://www.erdangjiade.com/templates/4-0-0-0-0-0 实现微信小程序携程首页顶部的界…

通过修改ospf的COST值来控制路由选路

配置好OSPF之后,发现默认走的是上面 PC1>tracert 192.168.200.1traceroute to 192.168.200.1, 8 hops max (ICMP), press Ctrl+C to stop1 192.168.100.254 16 ms <1 ms 16 ms2 10.10.10.2 15 ms &l

python入门题:输入输出练习

以下是Python基础语法的练习&#xff0c;项目要求和代码如下&#xff1a; """ 例3&#xff1a;小精灵&#xff1a;你好&#xff0c;欢迎古灵阁&#xff0c;请问您需要帮助吗&#xff1f;需要or不需要&#xff1f; 你&#xff1a;需要 小精灵&#xff1a;请问你需…

AutoCAD 2025(CAD2025)激活版

AutoCAD 2025 是一款由 Autodesk 公司开发的计算机辅助设计&#xff08;CAD&#xff09;软件。它广泛应用于建筑设计、机械制造、土木工程等领域。 AutoCAD 2025 提供了强大的绘图和设计工具&#xff0c;使用户能够创建精确的二维和三维图形。它支持多种绘图方式&#xff0c;如…

IDEA2023版本创建spring boot项目时,Java版本无法选择Java8问题解决

先简单说下出现本问题的原因&#xff1a; spring boot3.0发布时提到未来Java17将会成为主流版本&#xff0c;所有的Java EE Api都需要迁移到Jakarta EE上来。而spring boot3.0及以上版本已经不支持Java8了&#xff0c;支持Java17及以上版本。同时官方支持项目初始化的 Spring B…

Unity数独完整源码

支持的Unity版本&#xff1a;2018.1或更高。 这是一套完整且高效的数独源码&#xff0c;默认是9x9&#xff0c;有上千种关卡文件&#xff0c;4种难度&#xff0c;内有关卡编辑器&#xff0c;可扩展至4x4、6x6的关卡&#xff0c;还有英文文档对源码各方面可配置的地方进行说明&…

openGauss + Datakit搭建openGauss运维平台

系统架构OS 硬件需求&#xff1a;2c4g [rootlocalhost ~]# cat /etc/redhat-release CentOS Linux release 7.9.2009 (Core) [rootlocalhost ~]# uname -m x86_64 [rootlocalhost ~]# hostname -I 192.168.92.32 下载地址&#xff1a;https://opengauss.org/zh/download/ 下载…

Django之Web应用架构模式

一、Web应用架构模式 在开发Web应用中,有两种模式 1.1、前后端不分离 在前后端不分离的应用模式中,前端页面看到的效果都是由后端控制,由后端渲染页面或重定向,也就是后端需要控制前端的展示。前端与后端的耦合度很高 1.2、前后端分离 在前后端分离的应用模式中,后端仅返…

搜索树概念及操作

目录 一. .搜索树 1.1 概念 1.2 操作1 查找 1.3 操作2 插入 1.4 操作3 删除 1.5 性能分析 1.6 和 java 类集的关系 一. .搜索树 1.1 概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一棵空树&#xff0c;或者是具有以下性质的二叉树 : 若它的左子树不为空&#x…

C语言程序练习——汉诺塔递归

1. 题目 在终端输入汉诺塔层数n&#xff0c;实现将n层汉诺塔通过三座塔座A、B、C进行排列 2. 代码 #include <stdio.h>int hannuota(int len, int str, int tmp, int dst) {if (1 len){printf("%c -> %c\n", str, dst);}else{hannuota(len-1, str, dst, …

【每日一题】2024年3月汇编(上)

3.1【2369】检查数组是否存在有效划分 2369. 检查数组是否存在有效划分https://leetcode.cn/problems/check-if-there-is-a-valid-partition-for-the-array/ 1.这样的判断可以用动态规划来解决&#xff0c;用一个长度为(n1) 的数组来记录 是否存在有效划分&#xff0c;dp[i]…

单页面应用部署到iis上可以正常打开,刷新就404

当您遇到Dumi打包的网站部署到IIS上可以正常打开首页,但刷新页面时出现404错误的情况,这通常与以下几个方面有关: 路由处理: Dumi生成的项目通常基于SPA(Single Page Application)架构,使用前端路由来实现无刷新导航。这意味着大部分页面切换是在浏览器层面完成的,而不…