YOLOv9改进策略:注意力机制 | 二阶通道注意力机制(Second-order Channel Attention,SOCA),实现单图超分效果

news2025/1/8 13:54:56

💡💡💡本文改进内容:CVPR_2019 SOCA注意力,一种基于二阶通道注意力机制,能够单幅图像超分辨率,从原理角度分析能够在小目标检测领域实现大幅涨点效果!!!

💡💡💡在NEU-DET数据集上进行验证,能够实现涨点!!!

​​yolov9-c-SOCA summary: 969 layers, 51012677 parameters, 51012645 gradients, 238.9 GFLOPs

 改进结构图如下:

YOLOv9魔术师专栏

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨

🚀🚀🚀 本项目持续更新 | 更新完结保底≥80+ ,冲刺100+ 🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

⭐⭐⭐现更新的所有改进点抢先使用私信我,目前售价68,改进点30+个⭐⭐⭐

⭐⭐⭐专栏涨价趋势 99 ->199->259->299,越早订阅越划算⭐⭐⭐

YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等

 YOLOv9魔术师

💡💡💡全网独家首发创新(原创),适合paper !!!

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

 1.YOLOv9原理介绍

论文: 2402.13616.pdf (arxiv.org)

代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。

 YOLOv9框架图

1.1 YOLOv9框架介绍

YOLOv9各个模型介绍

2.SAN介绍

论文题目:Second-order Attention Network for Single Image Super-Resolution

论文地址:CVPR单幅图片超分辨率

 论文地址:http://openaccess.thecvf.com/content_CVPR_2019/papers/Dai_Second-Order_Attention_Network_for_Single_Image_Super-Resolution_CVPR_2019_paper.pdf

2.1论文创新点

1)提出了一个二阶通道注意力机制(Second-order Channel Attention,SOCA)以实现特征的相关性学习

2.2 SOCA注意力机制

效果如下图:

3.SOCA加入到YOLOv9

3.1新建py文件,路径为models/attention/attention.py

后续开放

3.2修改yolo.py

1)首先进行引用

from models.attention.attention import *

2)修改def parse_model(d, ch):  # model_dict, input_channels(3)

在源码基础上加入SOCA

        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        ###attention #####
        elif m in {SOCA}:
            c2 = ch[f]
            args = [c2, *args]

        ###attention #####

3.3 yolov9-c-SOCA.yaml

# YOLOv9
 
# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()
 
# anchors
anchors: 3
 
# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
 
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
 
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3
 
   # avg-conv down
   [-1, 1, ADown, [256]],  # 4-P3/8
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5
 
   # avg-conv down
   [-1, 1, ADown, [512]],  # 6-P4/16
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7
 
   # avg-conv down
   [-1, 1, ADown, [512]],  # 8-P5/32
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
   
   [-1, 1, SOCA, [512]],  # 10
  ]
 
# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 11
 
   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 14
 
   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 17 (P3/8-small)
 
   # avg-conv-down merge
   [-1, 1, ADown, [256]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)
 
   # avg-conv-down merge
   [-1, 1, ADown, [512]],
   [[-1, 11], 1, Concat, [1]],  # cat head P5
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 23 (P5/32-large)
   
   
   # multi-level reversible auxiliary branch
   
   # routing
   [5, 1, CBLinear, [[256]]], # 24
   [7, 1, CBLinear, [[256, 512]]], # 25
   [9, 1, CBLinear, [[256, 512, 512]]], # 26
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 27-P1/2
 
   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 28-P2/4
 
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 29
 
   # avg-conv down fuse
   [-1, 1, ADown, [256]],  # 30-P3/8
   [[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31  
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 32
 
   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 33-P4/16
   [[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34 
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 35
 
   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 36-P5/32
   [[26, -1], 1, CBFuse, [[2]]], # 37
 
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38
   
   
   
   # detection head
 
   # detect
   [[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1548911.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

文件编辑命令—vim

1.vim vim 是vi的升级版本.vi 文件名(vi方向键用不了) vim 的官方网站 (welcome home : vim online) 自己也说 vim 是一个程序开发工具而不是文字处理软件。 2.安装vim sudo apt install vim 如果出错了:apt update:刷新软件源; 出现"无法获得锁 之类的"sudo rm 文件…

Vit Transformer

一 VitTransformer 介绍 vit : An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 论文是基于Attention Is All You Need,由于图像数据和词数据数据格式不一样,经典的transformer不能处理图像数据,在视觉领域的应…

【jenkins+cmake+svn管理c++项目】Windows环境安装以及工具配置

一、目标和环境 目标:搭建一个jenkins环境,实现jenkins调用cmake和svn和VS编译c项目,并将生成的库上传svn。 环境:win10虚拟机(练习流程用,正式用的话还是放到服务器),VS2017. 二、…

肿瘤靶向肽 iRGD peptide环肽 1392278-76-0 c(CRGDKGPDC)

RGD环肽 c(CRGDKGPDC),iRGD peptide 1392278-76-0 结 构 式: H2N-CRGDKGPDC-OH(Disulfide Bridge:C1-C9) H2N-Cys-Arg-Gly-Asp-Lys-Gly-Pro-Asp-Cys-COOH(Disulfide Bridge:Cys1-Cys9) 氨基酸个数: 9 C35H57N13O14S2 平均分子量:…

智能优化算法 | Matlab实现牛顿-拉夫逊优化算法Newton-Raphson-based optimize(内含完整源码)

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 智能优化算法 | Matlab实现牛顿-拉夫逊优化算法Newton-Raphson-based optimize(内含完整源码) 源码设计 % ------------------------------------------------------------------------------------------------…

GIS与Python机器学习:开创地质灾害风险评价新纪元

地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下,地质灾害在世界范围内频繁发生。我国除滑坡灾害外,还包括崩塌、泥石流、地面沉…

55、Qt/事件机制相关学习20240326

一、代码实现设置闹钟,到时间后语音提醒用户。示意图如下: 代码: #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget), speecher(new QTextToSpeech(t…

【Redis】Redis 介绍Redis 为什么这么快?Redis数据结构Redis 和Memcache区别 ?为何Redis单线程效率也高?

目录 Redis 介绍 Redis 为什么这么快? Redis数据结构 Redis 和Memcache区别 ? 为何Redis单线程效率也高? Redis 介绍 Redis 是一个开源(BSD 许可)、基于内存、支持多种数据结构的存储系统,可以作为数据…

【Linux】从零开始认识进程 — 中下篇

送给大家一句话: 人一切的痛苦,本质上都是对自己无能的愤怒。而自律,恰恰是解决人生痛苦的根本途径。—— 王小波 从零认识进程 1 进程优先级1.1 什么是优先级1.2 为什么要有优先级1.3 Linux优先级的特点 && 查看方式1.4 其他概念 2…

1.6.1 变换

我们要想改变物体的位置,现有解决办法是,每一帧改变物体的顶点并且重配置缓冲区从而使物体移动,但是这样太繁琐,更好的解决方式是使用矩阵(Matrix)来更好的变换(Transform)一个物体。…

Python更改Word文档的页面大小

页面大小确定文档中每个页面的尺寸和布局。在某些情况下,您可能需要自定义页面大小以满足特定要求。在这种情况下,Python可以帮助您。通过利用Python,您可以自动化更改Word文档中页面大小的过程,节省时间和精力。本文将介绍如何使…

每日一题 --- 删除链表的倒数第 N 个结点[力扣][Go]

删除链表的倒数第 N 个结点 题目:19. 删除链表的倒数第 N 个结点 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head [1,2,3,4,5], n 2 输出:[1,2,3,5]示例 2&#x…

Python中lambda函数使用方法

在Python中,lambda 关键字用于创建匿名函数(无名函数),这些函数的特点是简洁、一次性使用,并且通常用于只需要一行表达式的简单场景。下面是lambda函数的基本结构和使用方法: 基本语法: lambd…

代码随想录算法训练营DAY7| C++哈希表Part.2|LeetCode:454.四数相加II、383.赎金信、15. 三数之和、18.四数之和

文章目录 454.四数相加II思路C代码 383.赎金信C 代码 15. 三数之和排序哈希法思路C代码 排序双指针法思路去重C代码 18.四数之和前言剪枝C代码 454.四数相加II 力扣题目链接 文章链接:454.四数相加II 视频链接:学透哈希表,map使用有技巧&…

STL的基本概念

一、STL的诞生 长久以来,软件界一直希望建立一种可重复利用的东西 C的面向对象和泛型编程思想,目的就是复用性的提升 面向对象的三大特性(简单理解) 封装:把属性和行为抽象出来作为一个整体来实现事和物 继承:子类继承父类&a…

linux下docker容器的使用

1、根据已有镜像images创建容器 1.1、查看镜像 如果是接手的别人的项目,需要从以往的images镜像中创建新容器,使用命令查看当前机器上的docker镜像: docker images1.2、创建容器 使用docker run 根据images镜像名创建容器,命令…

电阻的妙用:限流、分压、滤波,助力电路设计!

电阻可以降低电压,这是通过电阻的分压来实现的。事实上,利用电阻来降低电压只是电阻的多种功能之一。电路中的电阻与其他元件(电容、电感)结合用于限流、滤波等。(本文素材来源:https://www.icdhs.com/news…

SV-7045V网络草坪音箱 室外网络广播POE供电石头音箱

SV-7045V网络草坪音箱 室外网络广播POE供电石头音箱 描述 IP网络广播草坪音箱 SV-7045V是深圳锐科达电子有限公司的一款防水网络草坪音箱,具有10/100M以太网接口,可将网络音源通过自带的功放和喇叭输出播放,可达到功率20W。用在公园&#…

Kotlin高效App爬取工具:利用HttpClient与代理服务器的技巧

在当今数字化时代,移动应用(App)数据的价值日益凸显,而为了获取并分析这些数据,开发高效的数据爬取工具变得至关重要。Kotlin作为一种现代化、功能强大的编程语言,与HttpClient等强大工具的结合&#xff0c…

day53 动态规划part10

121. 买卖股票的最佳时机 简单 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可…