GIS与Python机器学习:开创地质灾害风险评价新纪元

news2025/1/8 19:18:58

地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下,地质灾害在世界范围内频繁发生。我国除滑坡灾害外,还包括崩塌、泥石流、地面沉降等各种地质灾害,具有类型多样、分布广泛、危害性大的特点。地质灾害危险性评价着重于根据多种影响因素和区域选择来评估在某个区域中某个阶段发生的地质灾害程度。以此预测和分析未来某个地形单位发生地质灾害的可能性。根据地质灾害的孕育和发展机理,现有的数据资料和技术,以及实际应用需要,评价目标和研究经费等因素,采用适当的方法,可通过模型评估并分析研究区域对地质灾害的危险性。那么如何深刻理解地灾危险性评价模型?如何高效处理好致灾因子数据?如何针对具体区域建立切实可行的地质灾害危险性评价与灾后重建方案?本课程将提供一套基于ArcGIS的方法和案例。
GIS(Geographical Information System)——地理信息系统,是集地理、测绘、遥感和信息技术为一体,地理空间数据进行获取、管理、存储、显示、分析和模型化,以解决与空间位置有关的分析与管理问题。ArcGIS软件具有空间数据和属性数据的输入、编辑、查询、简单空间分析统计、输出、报表等功能,这为多源数据的有机整合提供了可能,也为建立灵活的分析模块提供了方便。空间分析功能是GIS得以广泛应用的重要原因之一。运用GIS分析技术,对各因素进行统计分析、信息叠加复合,研究地质灾害类型、分布规律级别和灾害损失度等,运用危险性指数等方法对地质灾害危险性现状评价与制图,将能使地质灾害风险评价更加效率化、科学化,为地质灾害数据库建设提供有力支撑。
随着由遥感、地理信息系统和全球定位系统为代表的新型测绘技术的发展,地质灾害数据的质量和数量大幅提升。地质灾害数据具有多源性、时空性和非线性等特点,如何对这些海量数据进行准确且可靠的分析尤为重要。从当前的发展趋势来看,使用机器学习模型已经成为滑坡易发性区划的主流;深度学习作为当前人工智能领域的研究热点,能够从给定样本空间中学习到各种复杂的拟合函数,在广泛受到关注。

了解全文点击: 《GIS与Python机器学习:开创地质灾害风险评价新纪元》

目录

    • 基本概念与平台讲解
    • 数据获取及预处理
    • 地质灾害风险评价模型与方法
    • 地质灾害风险性评价
    • GIS在灾后重建中的应用实践
    • 基于机器学习的滑坡易发性分析
    • 论文写作分析

基本概念与平台讲解

1、基本概念
地质灾害类型
地质灾害发育特征与分布规律
地质灾害危害特征
地质灾害孕灾地质条件分析
地质灾害诱发因素与形成机理
在这里插入图片描述
2、GIS原理与ArcGIS平台介绍
GIS简介
ArcGIS基础
空间数据采集与组织
空间参考
空间数据的转换与处理
ArcGIS中的数据编辑
地理数据的可视化表达
空间分析:
数字地形分析
叠置分析
距离制图
密度制图
统计分析
重分类
三维分析
空间数据库建立及应用
在这里插入图片描述
在这里插入图片描述
1)地质灾害风险调查评价成果信息化技术相关要求解读
2)数学基础设计
比例尺;坐标系类型:地理坐标系,投影坐标系;椭球参数;投影类型;坐标单位;投影带类型等。
3)数据库内容及要素分层
图层划分原则;图层划分及命名;图层内部属性表

在这里插入图片描述
4)数据库建立及入库
创建数据库、要素集、要素类、栅格数据和关系表等。
在这里插入图片描述
矢量数据(shp文件)入库
Table表入库:将崩塌、滑坡、泥石流等表的属性数据与灾害点图层关联。
栅格数据入库
栅格数据集入库:遥感影像数据、DEM、坡度图、坡向图、降雨量等值线图以及其他经过空间分析得到的各种栅格图像入库。
5)数据质量控制
利用Topology工具检查点线面及其之间的拓扑关系并修改;图属一致性检查与修改。
3、Python编译环境配置
Python自带编辑器IDLE使用
Anaconda集成环境安装及使用
PyCharm环境安装及使用
在这里插入图片描述

数据获取及预处理

1、数据类型介绍
2、点数据获取与处理
灾害点统计数据获取与处理
在这里插入图片描述
气象站点数据获取与处理
气象站点点位数据处理
气象数据获取
数据整理
探索性分析
数据插值分析
在这里插入图片描述
3、矢量数据的获取与处理
道路、断层、水系等矢量数据的获取
欧氏距离
核密度分析
河网密度分析
在这里插入图片描述
4、栅格数据获取与处理
DEM,遥感影像等栅格数据获取
影像拼接、裁剪、掩膜等处理
NoData值处理
如何统一行列号
在这里插入图片描述
5、NC数据获取与处理
NC数据简介
NC数据获取
模型构建器
NC数据如何转TIF?
在这里插入图片描述
6、遥感云计算平台数据获取与处理
遥感云平台数据简介
如何从云平台获取数据?
数据上传与下载
基本函数简介
植被指数提取
土地利用数据获取
在这里插入图片描述

地质灾害风险评价模型与方法

在这里插入图片描述
1、地质灾害易发性评价模型与方法
评价单元确定
易发性评价指标体系
易发性评价模型
权重的确定
2、滑坡易发性评价
评价指标体系
地形:高程、坡度、沟壑密度、地势起伏度等。
地貌:地貌单元、微地貌形态、总体地势等。
地层岩性:岩性特征、岩层厚度、岩石成因类型等
地质构造:断层、褶皱、节理裂隙等。
地震:烈度、动峰值加速度、历史地震活动情况等
工程地质:区域地壳稳定性,基岩埋深,主要持力层岩性、承载力、岩土体工程地质分区等。
常用指标提取
坡度、坡型、高程、地形起伏度、断裂带距离、工程地质岩组、斜坡结构、植被覆盖度、与水系距离等因子提取
在这里插入图片描述
指标因子相关性分析
(1)相关性系数计算与分析
在这里插入图片描述
(2)共线性诊断
在这里插入图片描述
评价指标信息量
在这里插入图片描述
评价指标权重确定
滑坡易发性评价结果分析与制图
滑坡易发性综合指数
易发性等级划分
易发性评价结果制图分析
在这里插入图片描述
2、崩塌易发性评价
3、泥石流易发性评价
泥石流评价单元提取
水文分析,沟域提取
土方纵坡分析
泥石流评价指标
崩滑严重性、泥沙沿程补给长度比、沟口泥石流堆积活动、沟谷纵坡降、区域构造影响程度、流域植被覆盖度、工程地质岩组、沿沟松散堆积物储量、流域面积、流域相对高差、河沟堵塞程度等
典型泥石流评价指标选取
在这里插入图片描述
评价因子权重确定
泥石流易发性评价结果分析与制图
泥石流易发性综合指数计算
泥石流的易发性分级确定
泥石流易发性评价结果
在这里插入图片描述
4、地质灾害易发性综合评价
综合地质灾害易发值=MAX [泥石流灾害易发值,崩塌灾害易发值,滑坡灾害易发值]

地质灾害风险性评价

1、地质灾害风险性评价
在这里插入图片描述
2、地质灾害危险性评价
危险性评价因子选取
在某种诱发因素作用下,一定区域内某一时间段发生特定规模和类型地质灾害的可能性。
区域构造复杂程度,活动断裂发育程度,地震活动等都可能诱发地质灾害;强降雨的诱发,灾害发生的频率、规模也会增强地质灾害发生的机率。
危险性评价因子量化
崩滑危险性因子量化
统计各级范围内的灾害个数及面积,利用信息量计算方法到各级的信息量值。
泥石流危险性评价因子权重
危险性评价与结果分析
3、地质灾害易损性评价
地质灾害易损性因子分析

人口易损性
房屋建筑易损性
农业易损性
林业易损性
畜牧业易损性
道路交通易损性
水域易损性
人口易损性评价因子提取
人口密度数据处理

用人口密度数据来量化人口易损性,基于各行政单元统计年鉴获取的人口数量,结合房屋建筑区数据,量化人口的空间分布,基于GIS的网格分析,得到单位面积上的人口数量即人口密度。
易损性赋值
人口易损性因子提取
建筑易损性评价
建筑区密度数据处理

用房屋建筑区密度数据来量化房屋建筑易损性,利用房屋建筑区数据,基于GIS的网格分析,得到单位面积上的房屋建筑区面积,即房屋建筑区密度。
易损性赋值
建筑物易损性因子提取
交通设施易损性评价
道路数据的获取
用 ArcGIS 缓冲分析功能,形成道路的面文件
不同类型的道路进行赋值

道路易损分布结果分析
综合易损性评价
综合易损性叠加权重
综合易损性评价结果提取与分析
4、地质灾害风险评价结果提取与分析
在这里插入图片描述

GIS在灾后重建中的应用实践

1、应急救援路径规划分析
表面分析、成本权重距离、栅格数据距离制图等空间分析;
利用专题地图制图基本方法,制作四川省茂县地质灾害应急救援路线图,
最佳路径的提取与分析
2、灾害恢复重建选址分析
确定选址的影响因子
确定每种影响因子的权重
收集并处理每种影响因子的数据:地形分析、距离制图分析,重分类
恢复重建选址分析
3、震后生态环境变化分析
使用该类软件强大的数据采集、数据处理、数据存储与管理、空间查询与空间分析、可视化等功能进行生态环境变化评价。
在这里插入图片描述
在这里插入图片描述

基于机器学习的滑坡易发性分析

Python数据清洗
Python库简介与安装
读取数据
统一行列数
缺失值处理
相关性分析/共线性分析
主成分分析法(PCA)降维
数据标准化
生成特征集
在这里插入图片描述
在这里插入图片描述
相关概念:
训练前是否有必要对特征归一化
为什么要处理缺失值(Nan值)
输入的特征间相关性过高会有什么影响
什么是训练集、测试集和验证集;为什么要如此划分
超参数是什么
什么是过拟合,如何避免这种现象
模型介绍:
逻辑回归模型
随机森林模型
支持向量机模型
实现方案:
在这里插入图片描述
一、线性概率模型——逻辑回归
介绍
连接函数的选取:Sigmoid函数
致灾因子数据集:数据介绍;相关性分析;逻辑回归模型预测;样本精度分析;分类混淆矩阵
注意事项
二、SVM支持向量机
线性分类器
SVM-核方法:核方法介绍;sklearn的SVM核方法
参量优化与调整
SVM数据集:支持向量机模型预测;样本精度分析;分类混淆矩阵
三、Random Forest的Python实现
数据集
数据的随机选取
待选特征的随机选取
相关概念解释
参量优化与调整:随机森林决策树深度调参;CV交叉验证定义;混淆矩阵;样本精度分析
基于pandas和scikit-learn实现Random Forest:数据介绍;随机森林模型预测;样本精度分析;分类混淆矩阵
四、方法比较分析
模型性能评估:K 折交叉验证的方法
精度分析:accuracy;precision;recall;F1-score,AUC
在这里插入图片描述

论文写作分析

1、论文写作要点分析
2、论文投稿技巧分析
在这里插入图片描述
3、论文案例分析
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1548905.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

55、Qt/事件机制相关学习20240326

一、代码实现设置闹钟,到时间后语音提醒用户。示意图如下: 代码: #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget), speecher(new QTextToSpeech(t…

【Redis】Redis 介绍Redis 为什么这么快?Redis数据结构Redis 和Memcache区别 ?为何Redis单线程效率也高?

目录 Redis 介绍 Redis 为什么这么快? Redis数据结构 Redis 和Memcache区别 ? 为何Redis单线程效率也高? Redis 介绍 Redis 是一个开源(BSD 许可)、基于内存、支持多种数据结构的存储系统,可以作为数据…

【Linux】从零开始认识进程 — 中下篇

送给大家一句话: 人一切的痛苦,本质上都是对自己无能的愤怒。而自律,恰恰是解决人生痛苦的根本途径。—— 王小波 从零认识进程 1 进程优先级1.1 什么是优先级1.2 为什么要有优先级1.3 Linux优先级的特点 && 查看方式1.4 其他概念 2…

1.6.1 变换

我们要想改变物体的位置,现有解决办法是,每一帧改变物体的顶点并且重配置缓冲区从而使物体移动,但是这样太繁琐,更好的解决方式是使用矩阵(Matrix)来更好的变换(Transform)一个物体。…

Python更改Word文档的页面大小

页面大小确定文档中每个页面的尺寸和布局。在某些情况下,您可能需要自定义页面大小以满足特定要求。在这种情况下,Python可以帮助您。通过利用Python,您可以自动化更改Word文档中页面大小的过程,节省时间和精力。本文将介绍如何使…

每日一题 --- 删除链表的倒数第 N 个结点[力扣][Go]

删除链表的倒数第 N 个结点 题目:19. 删除链表的倒数第 N 个结点 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head [1,2,3,4,5], n 2 输出:[1,2,3,5]示例 2&#x…

Python中lambda函数使用方法

在Python中,lambda 关键字用于创建匿名函数(无名函数),这些函数的特点是简洁、一次性使用,并且通常用于只需要一行表达式的简单场景。下面是lambda函数的基本结构和使用方法: 基本语法: lambd…

代码随想录算法训练营DAY7| C++哈希表Part.2|LeetCode:454.四数相加II、383.赎金信、15. 三数之和、18.四数之和

文章目录 454.四数相加II思路C代码 383.赎金信C 代码 15. 三数之和排序哈希法思路C代码 排序双指针法思路去重C代码 18.四数之和前言剪枝C代码 454.四数相加II 力扣题目链接 文章链接:454.四数相加II 视频链接:学透哈希表,map使用有技巧&…

STL的基本概念

一、STL的诞生 长久以来,软件界一直希望建立一种可重复利用的东西 C的面向对象和泛型编程思想,目的就是复用性的提升 面向对象的三大特性(简单理解) 封装:把属性和行为抽象出来作为一个整体来实现事和物 继承:子类继承父类&a…

linux下docker容器的使用

1、根据已有镜像images创建容器 1.1、查看镜像 如果是接手的别人的项目,需要从以往的images镜像中创建新容器,使用命令查看当前机器上的docker镜像: docker images1.2、创建容器 使用docker run 根据images镜像名创建容器,命令…

电阻的妙用:限流、分压、滤波,助力电路设计!

电阻可以降低电压,这是通过电阻的分压来实现的。事实上,利用电阻来降低电压只是电阻的多种功能之一。电路中的电阻与其他元件(电容、电感)结合用于限流、滤波等。(本文素材来源:https://www.icdhs.com/news…

SV-7045V网络草坪音箱 室外网络广播POE供电石头音箱

SV-7045V网络草坪音箱 室外网络广播POE供电石头音箱 描述 IP网络广播草坪音箱 SV-7045V是深圳锐科达电子有限公司的一款防水网络草坪音箱,具有10/100M以太网接口,可将网络音源通过自带的功放和喇叭输出播放,可达到功率20W。用在公园&#…

Kotlin高效App爬取工具:利用HttpClient与代理服务器的技巧

在当今数字化时代,移动应用(App)数据的价值日益凸显,而为了获取并分析这些数据,开发高效的数据爬取工具变得至关重要。Kotlin作为一种现代化、功能强大的编程语言,与HttpClient等强大工具的结合&#xff0c…

day53 动态规划part10

121. 买卖股票的最佳时机 简单 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可…

蓝桥杯学习笔记 单词分析

试题 G: 单词分析 时间限制: 1.0s 内存限制: 512.0MB 本题总分:20 分 [问题描述] 小蓝正在学习一门神奇的语言,这门语言中的单词都是由小写英文字母组成,有些单词很长,远远超过正常英文单词的长度。小蓝学了很长时间也记不住一些单词&#xf…

C语言实现顺序表(增,删,改,查)

目录 一.概念: 1.静态顺序表:使用定长数组存储元素。 2.动态顺序表:使用动态开辟的数组存储。 二.顺序表的实现: 1.顺序表增加元素 1.检查顺序表 2.头插 3.尾插 2.顺序表删除元素 1.头删 2.尾删 3.指定位置删 3.顺序表查找元素 …

就业班 第二阶段 2401--3.25 day5 mycat读写分离

[TOC] 启动并更改临时密码 [rootmysql1~]# systemctl start mysqld && passwdgrep password /var/log/mysqld.log | awk END{ print $NF} && mysqladmin -p"$passwd" password Qwer123..; MyCAT读写分离 Mycat 是一个开源的数据库系统,但…

线程安全集合类原理

一、ConcurrentHashMap (一)、HashMap 1、JDK7 并发死链 采用头插法 扩容源码(扩容时并没有创建新的节点&#xff0c;只是将引用挂在不同的地方) void transfer(Entry[] newTable, boolean rehash) {int newCapacity newTable.length;for (Entry<K,V> e : table) {…

俚语加密漫谈

俚语加密是一种古老而有效的通信方式&#xff0c;将特定词语或短语在群体内赋予特殊含义&#xff0c;从而隐藏真实信息。类似于方言&#xff0c;它在历史上的应用不可忽视。随着计算机时代的到来&#xff0c;现代密码学通过数学运算编织密语&#xff0c;使得加密变得更加高深莫…

大数据开发(离线实时音乐数仓)

大数据开发&#xff08;离线实时音乐数仓&#xff09; 一、数据库与ER建模1、数据库三范式2、ER实体关系模型 二、数据仓库与维度建模1、数据仓库&#xff08;Data Warehouse、DW、DWH&#xff09;1、关系型数据库很难将这些数据转换成企业真正需要的决策信息&#xff0c;原因如…