深度学习十大算法之图神经网络(GNN)

news2024/11/20 19:29:57

一、图神经网络的基础

在这里插入图片描述

图的基本概念

图是数学中的一个基本概念,用于表示事物间复杂的关系。在图论中,图通常被定义为一组节点(或称为顶点)以及连接这些节点的边。每个边可以有方向,称为有向边,或者没有方向,称为无向边。在不同的应用场景中,节点可以代表不同的实体,如人、地点、物品等,而边则代表这些实体间的关系或者连接,如友谊、路线、交互等。

神经网络概述

神经网络是一种模仿生物神经网络(例如大脑)工作方式的算法,是人工智能和机器学习领域的核心。最简单的神经网络由输入层、若干隐藏层和输出层组成,其中每层包含多个神经元。这些神经元通过带权重的连接相互作用。输入数据在网络中传播,并在每个神经元处进行加权求和和激活函数处理,最终产生输出。神经网络能够通过学习数据中的模式来执行各种复杂任务,如分类、预测等。

GNN的起源与发展

图神经网络(GNN)起源于传统神经网络,是一种专门用于处理图结构数据的神经网络。早期的研究主要集中在如何将神经网络模型应用于图数据上,以及如何在图结构中有效传播信息。随着深度学习的兴起,GNN得到了快速发展。

GNN的核心思想是在图的节点间传播信息,从而学习节点的表示。这种方法使GNN能够捕捉节点之间的复杂关系和依赖性。早期的GNN模型包括Spectral CNN、Graph Convolutional Network (GCN) 等。这些模型在不同的图结构数据上表现出色,比如社交网络、化学分子结构等。

近年来,GNN已经发展出多种变体,如Graph Attention Networks (GAT)、GraphSAGE等,它们在效率、扩展性和表达能力上有所改进。此外,GNN在多个领域内的应用也日益增多,例如在推荐系统、交通网络、药物发现等领域展现出巨大的潜力。

GNN的发展不仅推动了图数据处理技术的进步,也为深度学习领域带来了新的研究方向和挑战。

二、GNN的工作原理

基础知识

在图深度学习中,理解节点嵌入的概念是至关重要的。在图论中,节点嵌入指的是将图中的每个节点映射到一个低维空间(d维嵌入空间),这一过程旨在使得嵌入空间中的相似节点在网络中彼此靠近。这种映射使得我们能够在图数据中捕获复杂的关系和特征。

考虑图中的两个节点 u 和 v。我们可以使用特征向量 x u \mathbf{x}_u xu x v \mathbf{x}_v xv 来表示这些节点的特征。目标是通过一个编码器函数(例如 E n c ( ⋅ ) Enc(\cdot) Enc()将这些特征向量转换成低维空间中的嵌入向量 z u \mathbf{z}_u zu z v \mathbf{z}_v zv

例如,编码器函数可以定义为:

E n c ( u ) = f ( W ⋅ x u + b ) Enc(u) = f(\mathbf{W} \cdot \mathbf{x}_u + \mathbf{b}) Enc(u)=f(Wxu+b)

其中 W \mathbf{W} W是权重矩阵, b \mathbf{b} b 是偏置向量, f f f是激活函数,例如ReLU。

在图深度学习中,度量嵌入空间中两个节点相似性的一种常用方法是计算它们嵌入向量之间的距离。相似性函数可以是欧几里得距离,定义为两个向量之间的直线距离。公式如下:

Similarity ( u , v ) = ∑ i = 1 d ( z u , i − z v , i ) 2 \text{Similarity}(u, v) = \sqrt{\sum_{i=1}^{d} (z_{u,i} - z_{v,i})^2} Similarity(u,v)=i=1d(zu,izv,i)2

其中 z u , i z_{u,i} zu,i z v , i z_{v,i} zv,i 分别是节点 u 和 v 在嵌入空间中的第 i 个维度的坐标。

此外,图神经网络(GNN)的设计目标是捕获图中节点间的复杂结构和关系。在GNN中,节点的嵌入是通过聚合邻居信息来更新的。例如,在图卷积网络(GCN)中,节点的更新公式可以表示为:

z u = f ( ∑ v ∈ N ( u ) 1 c u v W ⋅ x v ) \mathbf{z}_u = f\left(\sum_{v \in \mathcal{N}(u)} \frac{1}{c_{uv}} \mathbf{W} \cdot \mathbf{x}_v\right) zu=f(vN(u)cuv1Wxv)

其中, N ( u ) \mathcal{N}(u) N(u)是节点 u 的邻居集合, c u v c_{uv} cuv 是归一化常数,用于平衡不同节点间的影响。

节点表示学习

在GNN中,节点表示学习是一个核心过程,它的目标是将每个节点转换为数值形式的向量表示。这些向量包含了节点本身的特征信息以及与其相连的其他节点的信息。节点的表示向量可以用于后续的图分析任务,如节点分类、链接预测等。

提取特征
用于
节点
向量表示
图分析任务

邻接矩阵与特征聚合

GNN使用邻接矩阵来表示图中的节点间关系。邻接矩阵是一个二维数组,其中的元素表示节点间是否有边相连。特征聚合是GNN处理图数据的一个关键步骤,它涉及将一个节点的邻居节点信息聚合到该节点的表示中。

邻接矩阵
特征聚合
节点
邻居节点
更新节点表示

在这里插入图片描述

GNN的主要类型

GNN有多种不同的类型,每种类型在特征聚合和信息传播方面有所不同。

  1. Graph Convolutional Network (GCN): GCN通过将邻接矩阵和节点特征矩阵结合起来,利用卷积操作来更新节点表示。
卷积
结合
节点特征矩阵
更新后的节点表示
邻接矩阵
  1. Graph Attention Network (GAT): GAT引入了注意力机制,允许节点根据其邻居的重要性动态调整连接的权重。
注意力机制
加权邻居特征
节点
计算权重
更新节点表示

三、GNN的应用场景

社交网络分析

在社交网络分析中,GNN被用来识别社群结构、推荐朋友或内容,甚至预测用户行为。例如,通过分析用户间的互动,GNN可以预测用户可能感兴趣的新朋友或信息流内容。GraphSAGE是一个流行的开源框架,能够有效地生成社交网络中节点的嵌入表示。

生物信息学

GNN在生物信息学领域也显示出巨大潜力。它被用于蛋白质结构预测、基因表达分析等领域。例如,DeepMind的AlphaFold 使用GNN来预测蛋白质的三维结构,这对药物发现和生物医学研究具有重大意义。

推荐系统

GNN也被广泛应用于推荐系统中。它能够根据用户的历史交互数据,预测用户对未知项目的偏好。例如,Pinsage是Pinterest开发的一种基于图的深度学习模型,用于增强其推荐系统的效果。

四、GNN的实际案例

案例研究:使用GNN进行社交网络分析

在社交网络分析的案例中,GNN能够帮助揭示用户间复杂的互动模式。例如,使用GNN分析Twitter上的用户互动数据,可以识别出影响力大的用户、话题趋势,甚至是传播虚假信息的模式。相关研究和案例可以在arXiv找到。

简单实现:

在这个简单实现中,将使用PyTorch Geometric(一种流行的GNN库)和一个公开的社交网络数据集。使用的是Cora数据集,这是一个常用于图神经网络研究的学术论文引用网络。

请注意,要运行以下代码,需要安装torchtorch_geometric。代码会构建一个简单的图卷积网络(GCN),用于节点分类任务。

数据集:

  • 方法一:直接下载:数据集下载链接:https://networkrepository.com/cora.php 解压后放在和主函数同级的data文件夹下
  • 方法二:使用PyTorch Geometric库,它提供了一个简便的方法来下载和加载Cora数据集​​。以下是在Python中使用PyTorch Geometric获取Cora数据集的代码示例:
from torch_geometric.datasets import Planetoid
dataset = Planetoid(root='data/Cora', name='Cora')

data = dataset[0]
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')

print(f'Number of nodes: {data.num_nodes}')
print(f'Number of edges: {data.num_edges}')
print(f'Average node degree: {data.num_edges / data.num_nodes:.2f}')
print(f'Number of training nodes: {data.train_mask.sum()}')
print(f'Training node label rate: {int(data.train_mask.sum()) / data.num_nodes:.2f}')
print(f'Contains isolated nodes: {data.contains_isolated_nodes()}')
print(f'Contains self-loops: {data.contains_self_loops()}')
print(f'Is undirected: {data.is_undirected()}')
  • 方法三:如果更倾向于使用TensorFlow,可以通过以下链接下载Cora数据集,并按照TensorFlow Neural Structured Learning的格式对其进行处理。下载和处理数据集的命令如下
wget --quiet -P /tmp https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
tar -C /tmp -xvzf /tmp/cora.tgz

!wget https://raw.githubusercontent.com/tensorflow/neural-structured-learning/master/neural_structured_learning/examples/preprocess/cora/preprocess_cora_dataset.py

!python preprocess_cora_dataset.py \
--input_cora_content=/tmp/cora/cora.content \
--input_cora_graph=/tmp/cora/cora.cites \
--max_nbrs=5 \
--output_train_data=/tmp/cora/train_merged_examples.tfr \
--output_test_data=/tmp/cora/test_examples.tfr

main.py

import torch
from torch_geometric.datasets import Planetoid
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv

# 加载Cora数据集
dataset = Planetoid(root='/data/Cora', name='Cora', transform=T.NormalizeFeatures())

# 定义图卷积网络模型
class GCN(torch.nn.Module):
    def __init__(self):
        super(GCN, self).__init__()
        self.conv1 = GCNConv(dataset.num_node_features, 16)
        self.conv2 = GCNConv(16, dataset.num_classes)

    def forward(self, data):
        x, edge_index = data.x, data.edge_index

        x = self.conv1(x, edge_index)
        x = torch.relu(x)
        x = self.conv2(x, edge_index)

        return torch.log_softmax(x, dim=1)

# 初始化模型和优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = GCN().to(device)
data = dataset[0].to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

# 训练模型
model.train()
for epoch in range(200):
    optimizer.zero_grad()
    out = model(data)
    loss = torch.nn.functional.nll_loss(out[data.train_mask], data.y[data.train_mask])
    loss.backward()
    optimizer.step()

# 测试模型
model.eval()
_, pred = model(data).max(dim=1)
correct = pred[data.test_mask].eq(data.y[data.test_mask]).sum().item()
accuracy = correct / data.test_mask.sum().item()
print('Accuracy: {:.4f}'.format(accuracy))

案例研究:GNN在药物发现中的应用

药物发现领域中,图神经网络(GNN)的一个重要应用是通过分析化学结构来预测化合物的生物活性。具体来说,研究人员开发了新型的GNN模型,如RG-MPNN,这种模型将药效团信息层次性地融入到消息传递神经网络(MPNN)架构中,从而提高了化学属性预测的准确性。这种方法不仅吸收了原子和键的信息,还吸收了药效团的信息,能有效地用于虚拟筛选和先导化合物优化​​。

GNN在预测化合物与蛋白质相互作用(CPI)方面也显示出巨大潜力。在这方面的深度学习方法,如分层图卷积网络(HGCN),能够学习复杂的从原始数据中提取的抽象特征,从而提高性能。这些模型通常包括三个主要组件:负责分别编码化合物和蛋白质的两个组件,以及将这些编码层的输出转化为CPI预测的最终组件。例如,利用SMILES字符串来表示化合物,可以将其转换为独特的分子图,其中节点代表原子,边代表原子间的共价键。通过这种方法,研究人员可以更有效地预测化合物和蛋白质之间是否发生相互作用​​。。一个实际案例是使用GNN来加速新药的发现过程,这在ChemRXiv上有详细的论文和研究报告。

五、GNN的未来趋势与挑战

图神经网络(GNN)正迅速成为处理图结构数据的重要工具。尽管在多个领域取得了显著的进展,但GNN的未来发展仍面临一些挑战和研究趋势。

  • 数据集不平衡:目前可用的数据集存在限制标签数据、领域依赖性数据和数据不平衡等问题。解决这些问题的方法之一是使用迁移学习和领域适应技术。

  • 现有系统/模型的准确性:可以利用深度学习模型如GCN、GAT和GraphSAGE等方法来提高当前系统的效率和精度。此外,在大型、特定领域的数据集上训练模型可以进一步提高性能。

  • 提高文本分类效果:文本分类是一个重大挑战,可以通过利用先进的深度学习方法,如图神经网络,来提高文本分类的准确性和性能。

  • 过度平滑(Oversmoothing):在GNN中使用过多的消息传递和聚合层可能会导致过度平滑现象。随着网络深度的增加,图中不同部分的节点表示可能变得难以区分。在极端情况下,所有节点特征可能会趋于相似状态,失去其独特信息。这是因为在多次平滑迭代后,节点特征从其邻域中聚合了太多信息,从而丢失了个体的独特特征。

GNN的不断发展强调了需要解决的一系列图分析问题。在GNN的研究领域中,我们探讨了几个关键的近期研究领域,包括链接预测、图生成和图分类等​​​​。

随着GNN的持续发展,它们在捕获数据中的复杂关系和依赖性方面显示出独特的能力,但同时也面临着数据不平衡、模型准确性和文本分类等方面的挑战。未来,GNN的发展方向可能会集中在解决这些问题上,以及探索新的应用场景和优化现有模型的方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1547291.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分布式系统面试全集通第一篇(dubbo+redis+zookeeper----分布式+CAP+BASE+分布式事务+分布式锁)

目录 分布式系统面试全集通第一篇什么是分布式?和微服务的区别什么是分布式分布式与微服务的区别 什么是CAP?为什么不能三者同时拥有分区容错性一致性可用性 Base理论了解吗基本可用软状态最终一致性 什么是分布式事务分布式事务有哪些常见的实现方案?2PC(Two Ph…

【javaWeb 第六篇】后端-Tomcat服务器

Tomcat服务器基础入门 TomCat服务器Tomcat使用 TomCat服务器 web服务器是一个软件程序,对HTTP协议的操作进行封装,使得程序员不必直接对协议进行操作,让web开发更加的便捷 如何手动部署 如何手动部署一个web应用到Tomcat服务器中&#xff…

Element-Plus 实现动态渲染图标教程

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

网络编程(1)写一个简单的UDP网络通信程序【回显服务器】,并且实现一个简单的翻译功能

使用 JAVA 自带的api 目录 一、回显服务器 UdpEchoServer 服务器代码 客户端代码 二、翻译功能 UdpDictServer 在UdpDictServer里重写process方法 一、回显服务器 UdpEchoServer /*** 回显服务器* 写一个简单的UDP的客户端/服务器 通信的程序* 这个程序没有啥业务逻辑&am…

Windows版 CUDA安装

目录 一、说明 二、安装工具下载 三、CUDA安装 四、cuDNN配置 五、验证安装是否成功 一、说明 windows10 版本安装 CUDA ,首先需要下载两个安装包 CUDA toolkitcuDNN 官方教程 CUDA:https://docs.nvidia.com/cuda/cuda-installation-guide-micro…

1.4.1 着色器

着色器(Shader)是运行在GPU上的小程序,这些小程序为图形渲染管线的某个特定部分而运行,从基本意义上来说,着色器只是一种把输入转化为输出的程序。 一、着色器类QOpenGLShaderProgram QOpenGLShaderProgram是Qt中对着…

[WTL/Win32]_[初级]_[如何设置ListView的列宽不出现水平滚动条]

场景 开发WTL/Win32的程序时,经常会用到表格控件CListViewCtrl。这个控件需要设置列的宽度,当用完100%的宽度来平均分配给列宽时,一加载数据多,就会出现垂直滚动条后,水平滚动条也会同时出现的问题。怎么设置才能让水…

标题:深入了解 ES6 模块化技术

在 ES6 版本之前,JavaScript 一直缺乏一个内置的模块系统,这给大型项目的开发带来了一些挑战。ES6 引入了模块化的概念,为 JavaScript 开发者提供了一种更好的组织和管理代码的方式。 模块是 JavaScript 的一种代码组织方式,它将代…

【Python】输出一个 Python 项目下需要哪些第三方包

方法一 pycharm 方法二 要分析一个 Python 项目下需要哪些第三方包并生成 requirements.txt 文件,你可以使用 pipreqs 工具。以下是具体的步骤: 首先,确保你已经安装了 pipreqs 工具。如果未安装,可以使用以下命令进行安装&a…

Python包管理工具 pip 及其常用命令和参数用法

目录 PIP 主要功能 安装包 升级包 卸载包 列出包 检查依赖 pip的配置和环境 主要用法 1:版本 2:安装 Python 库 3:升级库 4:卸载库 5:搜索库 6:查看已安装库详细信息 7:只下载库…

海格里斯助推实体制造业转型升级 “算法定义硬件”解题AIoT市场

随着自动化的发展,电子商务和智能制造推动了自动化立体仓库的快速发展与创新,产生了“密集仓储”的概念。对于一个实体企业来讲,其数智物流转型正在趋向于“去伪存真”,企业追求高ROI与真实经济价值,具有降本增效的业务…

Day48:WEB攻防-PHP应用文件上传中间件CVE解析第三方编辑器已知CMS漏洞

目录 PHP/ASP-中间件-上传相关-IIS&Apache&Nginx(解析漏洞) IIS Apache Nginx PHP-编辑器-上传相关-第三方处理引用 PHP-CMS源码-上传相关-已知识别到利用 知识点: 1、PHP-中间件-文件上传-CVE&配置解析 2、PHP-编辑器-文件上传-第三方引用安全 3…

2024.3.26 QT

思维导图 实现闹钟 头文件&#xff1a; #define ALARM_CLOCK_H#include <QWidget> #include <QTime> #include <QTimerEvent> #include <QTimer> #include <QtTextToSpeech> //文本转语音类 #include <QDebug>QT_BEGIN_NAMESPACE namespa…

工业镜头常用参数之实效F(Fno.)和像圈

Fno. 工业镜头中常用到的参数F&#xff0c;有时候用F/#&#xff0c;Fno.来表示&#xff0c;指的是镜头通光能力的参数。它可用镜头焦距及入瞳直径来表示&#xff0c;也可通过镜头数值孔径&#xff08;NA&#xff09;和光学放大倍率&#xff08;β&#xff09;来计算。有效Fno.…

微软开源项目Garnet:Redis的竞争者还是替代者?

对于开源社区&#xff0c;最近的一大新闻就是Redis宣布从7.4版本开始&#xff0c;将采用Redis源代码可用许可证&#xff08;RSALv2&#xff09;和服务器端公共许可证&#xff08;SSPLv1&#xff09;的双重许可证&#xff0c;取代原有的BSD三条款许可证。这一变化引发了开发者社…

前端日期组件layui使用,月模式

初学前端&#xff0c;实战总结 概要 有一个日期组件&#xff0c;我的谷歌浏览器选完日期后&#xff0c;偶尔获取不到最新数据&#xff0c;有一个客户&#xff0c;是经常出不来数据。 日期组件是Wdate&#xff1a;调用的方法是WdatePicker onpicking&#xff0c;代码片段如下…

基于Python实现多功能翻译助手(下)

为了将上述步骤中的功能增强与扩展具体化为代码&#xff0c;我们将实现翻译历史记录功能、翻译选项配置以及UI的改进。 翻译历史记录功能 import json # 假设有一个用于存储历史记录的json文件 HISTORY_FILE translation_history.json # 初始化历史记录列表 translati…

HarmonyOS网格布局:List组件和Grid组件的使用

简介 在我们常用的手机应用中&#xff0c;经常会见到一些数据列表&#xff0c;如设置页面、通讯录、商品列表等。下图中两个页面都包含列表&#xff0c;“首页”页面中包含两个网格布局&#xff0c;“商城”页面中包含一个商品列表。 上图中的列表中都包含一系列相同宽度的列表…

【Unity人机交互】人工智能之爬虫开章

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

如何使用WordPress插件保护网站的安全

前段时间我们的网站受到了黑客的攻击&#xff0c;网站丢失了一些重要的数据&#xff0c;为了防止这种情况的再次发生&#xff0c;我们准备将网站全部迁移到高防服务器&#xff0c;经过一番对比后&#xff0c;我们选择了Hostease提供的高防服务器。它可以有效地抵御各种类型的网…