20240319-1-过拟合与欠拟合

news2025/1/11 11:50:52

过拟合欠拟合面试题

1. 如何理解高方差与低偏差?

模型的预测误差可以分解为三个部分: 偏差(bias), 方差(variance) 和噪声(noise).

偏差

  • 偏差度量了模型的期望预测与真实结果的偏离程度, 即刻画了学习算法本身的拟合能力。偏差则表现为在特定分布上的适应能力,偏差越大越偏离真实值。

方差

  • 方差度量了同样大小的训练集的变动所导致的学习性能的变化, 即刻画了数据扰动所造成的影响。方差越大,说明数据分布越分散。

噪声

  • 噪声表达了在当前任务上任何模型所能达到的期望泛化误差的下界, 即刻画了学习问题本身的难度 。

    下图为偏差和方差示意图

image-20210927150625116

泛化误差、偏差、方差和模型复杂度的关系(图片来源百面机器学习)

image-20240303171522611

2. 什么是过拟合和欠拟合,为什么会出现这个现象

过拟合指的是在训练数据集上表现良好,而在未知数据上表现差。如图所示:

img

欠拟合指的是模型没有很好地学习到数据特征,不能够很好地拟合数据,在训练数据和未知数据上表现都很差。

过拟合的原因在于:

  • 参数太多,模型复杂度过高;

  • 建模样本选取有误,导致选取的样本数据不足以代表预定的分类规则;

  • 样本噪音干扰过大,使得机器将部分噪音认为是特征从而扰乱了预设的分类规则;

  • 假设的模型无法合理存在,或者说是假设成立的条件实际并不成立。

欠拟合的原因在于:

  • 特征量过少;

  • 模型复杂度过低。

3. 怎么解决欠拟合

  • 增加新特征,可以考虑加入进特征组合、高次特征,来增大假设空间;

  • 添加多项式特征,这个在机器学习算法里面用的很普遍,例如将线性模型通过添加二次项或者三次项使模型泛化能力更强;

  • 减少正则化参数,正则化的目的是用来防止过拟合的,但是模型出现了欠拟合,则需要减少正则化参数;

  • 使用非线性模型,比如核SVM 、决策树、深度学习等模型;

  • 调整模型的容量(capacity),通俗地,模型的容量是指其拟合各种函数的能力;

  • 容量低的模型可能很难拟合训练集。

4. 怎么解决过拟合(重点)

  • 获取和使用更多的数据(数据集增强)——解决过拟合的根本性方法

  • 特征降维:人工选择保留特征的方法对特征进行降维

  • 加入正则化,控制模型的复杂度

  • Dropout

  • Early stopping

  • 交叉验证

  • 增加噪声

5. 为什么参数越小代表模型越简单?

因为参数的稀疏,在一定程度上实现了特征的选择。

越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。 因此参数越少代表模型越简单。

6. 为什么L1比L2更容易获得稀疏解?(重点)

img

img

img

7. Dropout为什么有助于防止过拟合?(重点)

  • 取平均的作用

    先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。例如3个网络判断结果为数字9,那么很有可能真正的结果就是数字9,其它两个网络给出了错误结果。这种“综合起来取平均”的策略通常可以有效防止过拟合问题。因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络,随机删掉一半隐藏神经元导致网络结构已经不同,整个dropout过程就相当于对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。

  • 减少神经元之间复杂的共适应关系

    因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况 。迫使网络去学习更加鲁棒的特征 ,这些特征在其它的神经元的随机子集中也存在。换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的特征。从这个角度看dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高。

  • Dropout类似于性别在生物进化中的角色

    物种为了生存往往会倾向于适应这种环境,环境突变则会导致物种难以做出及时反应,性别的出现可以繁衍出适应新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝。

参考链接:https://zhuanlan.zhihu.com/p/38200980

8. Dropout在训练和测试时都需要吗?

Dropout在训练时采用,是为了减少神经元对部分上层神经元的依赖,类似将多个不同网络结构的模型集成起来,减少过拟合的风险。而在测试时,应该用整个训练好的模型,因此不需要dropout。

9. Dropout如何平衡训练和测试时的差异呢?

Dropout 在训练时以一定的概率使神经元失活,实际上就是让对应神经元的输出为0。假设失活概率为 p ,就是这一层中的每个神经元都有p的概率失活。

例如在三层网络结构中,如果失活概率为0.5,则平均每一次训练有3个神经元失活,所以输出层每个神经元只有3个输入,而实际测试时是不会有dropout的,输出层每个神经元都有6个输入。

因此在训练时还要对第二层的输出数据除以(1-p)之后再传给输出层神经元,作为神经元失活的补偿,以使得在训练时和测试时每一层输入有大致相同的期望。

10. BN和Dropout共同使用时会出现的问题

BN和Dropout单独使用都能减少过拟合并加速训练速度,但如果一起使用的话并不会产生1+1>2的效果,相反可能会得到比单独使用更差的效果。

参考链接:https://www.zhihu.com/tardis/sogou/art/61725100

11. L1 和 L2 正则先验分别服从什么分布

先验就是优化的起跑线, 有先验的好处就是可以在较小的数据集中有良好的泛化性能,当然这是在先验分布是接近真实分布的情况下得到的了,从信息论的角度看,向系统加入了正确先验这个信息,肯定会提高系统的性能。

L1 正则先验分布是 Laplace 分布,L2 正则先验分布是 Gaussian 分布。

Laplace 分布公式为:
f ( x ) = 1 2 λ e − ∣ x − μ ∣ λ f(x)=\frac{1}{2 \lambda} e^{-\frac{|x-\mu|}{\lambda}} f(x)=2λ1eλxμ

Gaussian 分布公式为:
f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) f(x)=2π σ1exp(2σ2(xμ)2)

对参数引入高斯正态先验分布相当于L2正则化:

img

对参数引入拉普拉斯先验等价于 L1正则化:

img

从上面两图可以看出, L2先验趋向零周围, L1先验趋向零本身。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1546322.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二叉树|236.二叉树的最近公共祖先

力扣题目链接 class Solution { public:TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {if (root q || root p || root NULL) return root;TreeNode* left lowestCommonAncestor(root->left, p, q);TreeNode* right lowestCommonAncesto…

智慧工地源码 数字孪生可视化大屏 工地管理平台系统源码 多端展示(PC端、手机端、平板端)

智慧工地源码 数字孪生可视化大屏 工地管理平台系统源码 多端展示(PC端、手机端、平板端) 智慧工地系统多端展示(PC端、手机端、平板端);数字孪生可视化大屏,一张图掌握项目整体情况;使用轻量化模型,部署三…

IPhone让用户升级?网友你咋不降点!

最近一个热搜刷屏了我的朋友圈,我点开一看是苹果上架了全新“换代有来”页面,其主要表达了苹果用户可以将旧的iphone升级到全新的iphoe15上。并告诉贴心的给网友对比了一下换代的好处。 并且还详细了说了一些iPhone 11、11 Pro、11 Pro Max、12、12 mini…

flutter使用Command库调用cmd命令或者shell命令,并支持多个参数和指定文件夹目录

想要在不同的平台上运行flutter doctor命令,就需要知道对应的平台是windows还是linux,如果是windows就需要调用cmd命令,如果是linux平台,就需要调用sh命令,所以可以通过cfg!实现不同平台的判断,然后调用不同…

【C++重新认知】:泛型编程(模板编程)

一、什么是泛型编程 当我们设计函数或者类时,有时候需要对应不同数据类型编写相同的代码,这样的话不仅有代码冗余,而且更加的加大程序员开发事件,降低开发效率,因此泛型编程就是解决此类情况----不同的数据类型可以重…

【大模型基础】什么是KV Cache?

哪里存在KV Cache? KV cache发生在多个token生成的步骤中,并且只发生在decoder中(例如,decoder-only模型,如 GPT,或在encoder-decoder模型,如T5的decoder部分),BERT这样…

华院计算荣获CSDN“创新企业”和“年度创新产品与解决方案”大奖

日前,全国最大的专业开发者社区CSDN发布“2023中国开发者影响力年度榜单”,华院计算凭借其卓越的认知智能引擎平台荣获“创新企业”和“年度创新产品与解决方案”两项大奖。 CSDN 以数据为基础,经过个人或企业提交资料、层层筛选、深入调研、…

【C++教程从0到1入门编程】第十三篇:STL中list类的模拟实现

一、list的模拟实现 #include<iostream> #include<assert.h> #pragma once namespace jyr {template<class T>struct _list_node{_list_node<T>* _next;_list_node<T>* _prev;T _data;_list_node(const T& val T()):_next(nullptr), _prev(…

西圣VS飞利浦VS倍思开放式耳机哪款值得入手?爆款产品无广大测评

在当今这个无线耳机盛行的时代&#xff0c;开放式耳机以其独特的佩戴舒适度和出色的音质体验&#xff0c;逐渐赢得了消费者的青睐&#xff0c;西圣、飞利浦、倍思作为市场上的知名品牌&#xff0c;都推出了各具特色的开放式耳机产品&#xff0c;许多消费者也因此不知道哪款更加…

Mybatis中条件传入多个参数时,如何处理

entity&#xff1a; Data AllArgsConstructor NoArgsConstructor public class User {private Integer id;private String username;private String password;private String phone;private String address; }dao接口&#xff1a; public interface UserDAO {List<User>…

AWS EC2设置root登录

在使用亚马逊的服务器时&#xff0c;官方默认是使用密钥登录&#xff0c;跟国内的云服务器差别较大&#xff0c;本文记录下&#xff0c;如何开放AWS EC2的root登录。 一、通过网页版或者XShell登录服务器 这里略过 二、设置root账户密码 # 切换 root sudo -i # 设置或修改密…

常见端口及对应服务

6379 redis未授权 7001、7002 weblogic默认弱口令、反序列化 9200、9300 elasticsearch 参考乌云&#xff1a;多玩某服务器ElasticSearch命令执行漏洞 11211 memcache未授权访问 50000 SAP命令执行 50070、50030 hadoop默认端口未授权访问

1.Git快速入门

文章目录 Git快速入门1.Git概述2.SCM概述3.Git安装3.1 软件下载3.2 软件安装3.3 软件测试 Git快速入门 1.Git概述 Git是一个免费的&#xff0c;开源的分布式版本控制系统&#xff0c;可以快速高效地处理从小型到大型的各种项目&#xff0c;Git易于学习&#xff0c;占用空间小&…

A Novel Negative Sample Generating Method for KnowledgeGraph Embedding

摘要 为了有效地提取知识图中的关系和原因&#xff0c;将实体和关系编码到一个连续的低维语义空间中。在负样本生成阶段&#xff0c;大多数知识图嵌入方法更注重替换头或尾实体以提高训练效率&#xff0c;很少替换关系。这些负样本生成方法对关系预测的贡献不大。本文提出了一…

dubbo再回首

dubbo 服务框架&#xff0c; 远程通讯&#xff0c;集群容错&#xff0c;自动发现 spi&#xff1a; 接口全限定名找到指定目录下对应的文件&#xff0c;获取具体的实现类然后加载 增加缓存存储实例&#xff0c;对ioc api对支持 流程&#xff1a; 之前的博客实战总结&#xff1…

Linux之文件管理与重定向

文件的管理 最开始说到过, 一个进程是可以打开多个文件的并且可以对这些文件做出不同的操作, 也就是说加载到内存中的文件可能存在多个. 操作系统要不要管理这些打开的文件呢? 当我们在程序里面打开多个文件时, 操作系统肯定是得对这些文件进行管理的, 而管理的本质就是对数…

百度百科词条创建流程是怎样的?

百度百科词条&#xff0c;作为当今权威的知识分享平台之一&#xff0c;越来越多的个人和企业希望自己在百度百科上拥有独立的词条。如何创建一个高质量的百度百科词条呢&#xff1f;本文伯乐网络传媒将为您详细解析百度百科词条的创建流程及编辑技巧&#xff0c;并提供一些常见…

“数字化”持续走热,VR全景助力制造业上“云”

制造业要升级&#xff0c;数字化改造是重要途径。 早年间&#xff0c;由于对数字化的认识不足&#xff0c;一些企业明明有数字化改造需求&#xff0c;却不敢、不愿、不会上“云”。直到此次两会期间&#xff0c;2024年政府工作报告再次提出推动制造业数字化转型&#xff0c;越…

Learn OpenGL 25 法线贴图

为什么要引入法线贴图 我们的场景中已经充满了多边形物体&#xff0c;其中每个都可能由成百上千平坦的三角形组成。我们以向三角形上附加纹理的方式来增加额外细节&#xff0c;提升真实感&#xff0c;隐藏多边形几何体是由无数三角形组成的事实。纹理确有助益&#xff0c;然而…

SHA加密

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…