一、数组和集合的区别
相同点
- 都是容器,可以存储多个数据
不同点
- 数组的长度是不可变的,集合的长度是可变的
- 数组可以存基本数据类型和引用数据类型
- 集合只能存引用数据类型,如果要存基本数据类型,需要存对应的包装类
二、集合类体系结构
三、Collection 集合
1.Collection集合概述
-
是单例集合的顶层接口,它表示一组对象,这些对象也称为Collection的元素
-
JDK 不提供此接口的任何直接实现.它提供更具体的子接口(如Set和List)实现
2.创建Collection集合的对象
-
多态的方式
-
具体的实现类ArrayLis
Collection<String> c = new ArrayList<>();
3.常用方法
方法名 | 说明 |
---|---|
boolean add(E e) | 添加元素 |
boolean remove(Object o) | 从集合中移除指定的元素 |
boolean removeIf(Object o) | 根据条件进行移除 |
void clear() | 清空集合中的元素 |
boolean contains(Object o) | 判断集合中是否存在指定的元素 |
boolean isEmpty() | 判断集合是否为空 |
int size() | 集合的长度,也就是集合中元素的个数 |
4.Collection集合的遍历
1 迭代器遍历
-
迭代器介绍
-
迭代器,集合的专用遍历方式
-
Iterator<E> iterator(): 返回此集合中元素的迭代器,通过集合对象的iterator()方法得到
-
-
Iterator中的常用方法
boolean hasNext(): 判断当前位置是否有元素可以被取出 E next(): 获取当前位置的元素,将迭代器对象移向下一个索引位置
-
Collection集合的遍历
public class IteratorDemo1 {
public static void main(String[] args) {
//创建集合对象
Collection<String> c = new ArrayList<>();
//添加元素
c.add("hello");
c.add("world");
c.add("java");
c.add("javaee");
//Iterator<E> iterator():返回此集合中元素的迭代器,通过集合的iterator()方法得到
Iterator<String> it = c.iterator();
//用while循环改进元素的判断和获取
while (it.hasNext()) {
String s = it.next();
System.out.println(s);
}
}
}
- 迭代器中删除的方法
void remove(): 删除迭代器对象当前指向的元素
2 增强for
快捷键:list.for
-
介绍
-
它是JDK5之后出现的,其内部原理是一个Iterator迭代器
-
实现Iterable接口的类才可以使用迭代器和增强for
-
简化数组和Collection集合的遍历
-
-
格式
for(集合/数组中元素的数据类型 变量名 : 集合/数组名) {
// 已经将当前遍历到的元素封装到变量中了,直接使用变量即可
}
代码
public class MyCollectonDemo1 {
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<>();
list.add("a");
list.add("b");
list.add("c");
list.add("d");
list.add("e");
list.add("f");
//1,数据类型一定是集合或者数组中元素的类型
//2,str仅仅是一个变量名而已,在循环的过程中,依次表示集合或者数组中的每一个元素
//3,list就是要遍历的集合或者数组
for(String str : list){
System.out.println(str);
}
}
}
细节点注意:
- 1.报错NoSuchElementException
- 2.迭代器遍历完毕,指针不会复位
- 3.循环中只能用一次next方法
- 4.迭代器遍历时,不能用集合的方法进行增加或者删除
3 lambda表达式
利用forEach方法,再结合lambda表达式的方式进行遍历
public class A07_CollectionDemo7 {
public static void main(String[] args) {
/*
lambda表达式遍历:
default void forEach(Consumer<? super T> action):
*/
//1.创建集合并添加元素
Collection<String> coll = new ArrayList<>();
coll.add("zhangsan");
coll.add("lisi");
coll.add("wangwu");
//2.利用匿名内部类的形式
//底层原理:
//其实也会自己遍历集合,依次得到每一个元素
//把得到的每一个元素,传递给下面的accept方法
//s依次表示集合中的每一个数据
/* coll.forEach(new Consumer<String>() {
@Override
public void accept(String s) {
System.out.println(s);
}
});*/
//lambda表达式
coll.forEach(s -> System.out.println(s));
}
}
四、List集合
1List集合的概述和特点
-
List集合的概述
-
有序集合,这里的有序指的是存取顺序
-
用户可以精确控制列表中每个元素的插入位置,用户可以通过整数索引访问元素,并搜索列表中的元素
-
与Set集合不同,列表通常允许重复的元素
-
-
List集合的特点
-
存取有序
-
可以重复
-
有索引
-
2.List集合的特有方法
方法名 | 描述 |
---|---|
void add(int index,E element) | 在此集合中的指定位置插入指定的元素 |
E remove(int index) | 删除指定索引处的元素,返回被删除的元素 |
E set(int index,E element) | 修改指定索引处的元素,返回被修改的元素 |
E get(int index) | 返回指定索引处的元素 |
3.List集合的五种遍历方式
-
迭代器
-
列表迭代器
-
增强for
-
Lambda表达式
-
普通for循环
//创建集合并添加元素
List<String> list = new ArrayList<>();
list.add("aaa");
list.add("bbb");
list.add("ccc");
//1.迭代器
Iterator<String> it = list.iterator();
while(it.hasNext()){
String str = it.next();
System.out.println(str);
}
//2.增强for
//下面的变量s,其实就是一个第三方的变量而已。
//在循环的过程中,依次表示集合中的每一个元素
for (String s : list) {
System.out.println(s);
}
//3.Lambda表达式
//forEach方法的底层其实就是一个循环遍历,依次得到集合中的每一个元素
//并把每一个元素传递给下面的accept方法
//accept方法的形参s,依次表示集合中的每一个元素
list.forEach(s->System.out.println(s) );
//4.普通for循环
//size方法跟get方法还有循环结合的方式,利用索引获取到集合中的每一个元素
for (int i = 0; i < list.size(); i++) {
//i:依次表示集合中的每一个索引
String s = list.get(i);
System.out.println(s);
}
// 5.列表迭代器
//获取一个列表迭代器的对象,里面的指针默认也是指向0索引的
//额外添加了一个方法:在遍历的过程中,可以添加元素
ListIterator<String> it = list.listIterator();
while(it.hasNext()){
String str = it.next();
if("bbb".equals(str)){
//qqq
it.add("qqq");
}
}
System.out.println(list);
4 细节点注意:
List系列集合中的两个删除的方法
1.直接删除元素
2.通过索引进行删除
删除元素
//请问:此时删除的是1这个元素,还是1索引上的元素?
//为什么?
//因为在调用方法的时候,如果方法出现了重载现象
//优先调用,实参跟形参类型一致的那个方法。
list.remove(1);
//手动装箱,手动把基本数据类型的1,变成Integer类型
Integer i = Integer.valueOf(1);
list.remove(i);
System.out.println(list);
五、LinkedList集合
特有方法:
方法名 | 说明 |
---|---|
public void addFirst(E e) | 在该列表开头插入指定的元素 |
public void addLast(E e) | 将指定的元素追加到此列表的末尾 |
public E getFirst() | 返回此列表中的第一个元素 |
public E getLast() | 返回此列表中的最后一个元素 |
public E removeFirst() | 从此列表中删除并返回第一个元素 |
public E removeLast() | 从此列表中删除并返回最后一个元素 |
public class MyLinkedListDemo4 {
public static void main(String[] args) {
LinkedList<String> list = new LinkedList<>();
list.add("aaa");
list.add("bbb");
list.add("ccc");
// public void addFirst(E e) 在该列表开头插入指定的元素
//method1(list);
// public void addLast(E e) 将指定的元素追加到此列表的末尾
//method2(list);
// public E getFirst() 返回此列表中的第一个元素
// public E getLast() 返回此列表中的最后一个元素
//method3(list);
// public E removeFirst() 从此列表中删除并返回第一个元素
// public E removeLast() 从此列表中删除并返回最后一个元素
//method4(list);
}
private static void method4(LinkedList<String> list) {
String first = list.removeFirst();
System.out.println(first);
String last = list.removeLast();
System.out.println(last);
System.out.println(list);
}
private static void method3(LinkedList<String> list) {
String first = list.getFirst();
String last = list.getLast();
System.out.println(first);
System.out.println(last);
}
private static void method2(LinkedList<String> list) {
list.addLast("www");
System.out.println(list);
}
private static void method1(LinkedList<String> list) {
list.addFirst("qqq");
System.out.println(list);
}
}
六、ArrayList源码分析:
核心步骤:
-
创建ArrayList对象的时候,他在底层先创建了一个长度为0的数组。
数组名字:elementDate,定义变量size。
size这个变量有两层含义: ①:元素的个数,也就是集合的长度 ②:下一个元素的存入位置
-
添加元素,添加完毕后,size++
扩容时机一:
-
当存满时候,会创建一个新的数组,新数组的长度,是原来的1.5倍,也就是长度为15.再把所有的元素,全拷贝到新数组中。如果继续添加数据,这个长度为15的数组也满了,那么下次还会继续扩容,还是1.5倍。
扩容时机二:
-
一次性添加多个数据,扩容1.5倍不够,怎么办呀?
如果一次添加多个元素,1.5倍放不下,那么新创建数组的长度以实际为准。
举个例子: 在一开始,如果默认的长度为10的数组已经装满了,在装满的情况下,我一次性要添加100个数据很显然,10扩容1.5倍,变成15,还是不够,
怎么办?
此时新数组的长度,就以实际情况为准,就是110
添加一个元素时的扩容:
添加多个元素时的扩容:
七、LinkedList源码分析:
底层是双向链表结构
核心步骤如下:
-
刚开始创建的时候,底层创建了两个变量:一个记录头结点first,一个记录尾结点last,默认为null
-
添加第一个元素时,底层创建一个结点对象,first和last都记录这个结点的地址值
-
添加第二个元素时,底层创建一个结点对象,第一个结点会记录第二个结点的地址值,last会记录新结点的地址值
八、迭代器源码分析:
迭代器遍历相关的三个方法:
-
Iterator<E> iterator() :获取一个迭代器对象
-
boolean hasNext() :判断当前指向的位置是否有元素
-
E next() :获取当前指向的元素并移动指针
九、泛型
泛型概述
-
泛型的介绍
泛型是JDK5中引入的特性,它提供了编译时类型安全检测机制
-
泛型的好处
-
把运行时期的问题提前到了编译期间
-
避免了强制类型转换
-
-
泛型的细节
- 泛型中不能写基本数据类型
- 指定泛型的具体类型后,传递数据时,可以传入该类类型或者其子类类型如果不写泛型,类型默认是Object
-
泛型的定义格式
-
<类型>: 指定一种类型的格式.尖括号里面可以任意书写,一般只写一个字母.例如: <E> <T>
-
<类型1,类型2…>: 指定多种类型的格式,多种类型之间用逗号隔开.例如: <E,T> <K,V>
-
泛型可以在很多地方定义
- 类后面 泛型类
使用场景:当一个类中,某个变量的教据类型不确定时,就可以定义带有泛型的类
例:
public class MyArrayList<E> {
Object[] obj = new Object[10];
int size;
/*
E : 表示是不确定的类型。该类型在类名后面已经定义过了。
e:形参的名字,变量名
* */
public boolean add(E e){
obj[size] = e;
size++;
return true;
}
public E get(int index){
return (E)obj[index];
}
@Override
public String toString() {
return Arrays.toString(obj);
}
}
- 方法上面 泛型方法
方法中形参类型不确定时
方案①:使用类名后面定义的泛型
方案②:在方法申明上定义自己的泛型
例:Public<T> void show(T t)
public class ListUtil {
private ListUtil(){}
//类中定义一个静态方法addAll,用来添加多个集合的元素。
/*
* 参数一:集合
* 参数二~最后:要添加的元素
*
* */
public static<E> void addAll(ArrayList<E> list, E e1,E e2,E e3,E e4){
list.add(e1);
list.add(e2);
list.add(e3);
list.add(e4);
}
/* public static<E> void addAll2(ArrayList<E> list, E...e){
for (E element : e) {
list.add(element);
}
}*/
public void show(){
System.out.println("尼古拉斯·纯情·天真·暖男·阿玮");
}
}
- 接口后面 泛型接口
重点:如何使用一个带泛型的接口
方式1:实现类给出具体类型
例:public class MyArrayList2 implements List<String>
方式2:实现类延续泛型,创建对象时再确定
例:ublic class MyArrayList3<E> implements List<E>
泛型不具备继承性,数据具备继承性
泛型里面写的是什么类型,那么只能传递什么类型的数据。弊端:
利用泛型方法有一个小弊端,此时他可以接受任意的数据类型Ye Fu zi student
希望:本方法虽然不确定类型,但是以后我希望只能传递Ye Fu Zi
此时我们就可以使用泛型的
通配符:
? 也表示不确定的类型
他可以进行类型的限定
? extends E:表示可以传递E或者E所有的子类类型
? super E:表示可以传递E或者E所有的父类类型
应用场景:
1.如果我们在定义类、方法、接口的时候,如果类型不确定,就可以定义泛型类、泛型方法、泛型接口。2.如果类型不确定,但是能知道以后只能传递某个继承体系中的.就可以泛型的通配符
泛型的通配符:
关键点:可以限定类型的范围。
十、Set集合
1Set集合概述和特点【应用】
-
不可以存储重复元素
-
没有索引,不能使用普通for循环遍历
2.2Set集合的使用【应用】
存储字符串并遍历