golang sync.Map之如何设计一个并发安全的读写分离结构?

news2024/11/15 8:31:43

在 golang中,想要并发安全的操作map,可以使用sync.Map结构,sync.Map 是一个适合读多写少的数据结构,今天我们来看看它的设计思想,来看看为什么说它适合读多写少的场景。

如下,是golang 中sync.Map的数据结构,其中 属性read 是 只读的 map,dirty 是负责写入的map,sync.Map中的键值对value值本质上都是entry指针类型,entry中的p才指向了实际存储的value值

// sync.Map的核心数据结构
type Map struct {
    mu Mutex                        // 对 dirty 加锁保护,线程安全
    read atomic.Value                 // read 只读的 map,充当缓存层
    dirty map[interface{}]*entry     // 负责写操作的 map,当misses = len(dirty)时,将其赋值给read
    misses int                        // 未命中 read 时的累加计数,每次+1
}
// 上面read字段的数据结构
type readOnly struct {
    m  map[interface{}]*entry // 
    amended bool // Map.dirty的数据和这里read中 m 的数据不一样时,为true
}

// 上面m字段中的entry类型
type entry struct {
    // value是个指针类型
    p unsafe.Pointer // *interface{}
}

我们从一个sync.Map的数据写入和数据查询 两个过程来分析这两个map中数据的变化。

我将不展示具体的代码,仅仅讲述数据的流动,相信懂了这个以后再去看代码应该不难。

步骤一: 首先是一个初始的sync.Map 结构,我们往其中写入数据,数据会写到dirty中,同时,由于sync.Map 刚刚创建,所以read map还不存在,所以这里会先初始化一个read map 。amended 是read map中的一个属性,为true代表 dirty 和read中数据不一致。

image.png

步骤二: 接着,如果后续再继续写入新数据,
在read map没有从dirty 同步数据之前,即amended 变为false之前,再写入新键值对都只会往dirty里写。

image.png

步骤三: 如果有读操作,sync.Map 都会尽可能的让其先读read map,read map读取不到并且amended 为true,即read 和dirty 数据不一致时,会去读dirty,读dirty的过程是上锁的。

image.png

步骤四: 当读取read map中miss次数大于等于dirty数组的长度时,会触发dirty map整体更新为readOnly map,并且这个过程是阻塞的。更新完成后,原先dirty会被置为空,amended 为false,代表read map同步了之前所有的数据。如下图所示,

image.png

整体更新的逻辑是直接替换变量的值,并非挨个复制,

func (m *Map) missLocked() {
    m.misses++
    if m.misses < len(m.dirty) {
        return
    }
    
    // 将dirty置给read,因为穿透概率太大了(原子操作,耗时很小)
    m.read.Store(readOnly{m: m.dirty})
    m.dirty = nil
    m.misses = 0
}

步骤五: 如果后续sync.Map 不再插入新数据,那么读取时就可以一直读取read map中的数据了,直接读取read map 中的key是十分高效的,只需要用atomic.Load 操作 取到readOnly map结构体,然后从中取出特定的key就行。

如果读miss了,因为没有插入新数据,read.amended=false 代表read 是保存了所有的k,v键值对,读miss后,也不会再去读取dirty了,也就不会有读dirty加锁的过程。

// 上面read字段的数据结构
type readOnly struct {
    m  map[interface{}]*entry // 
    amended bool // Map.dirty的数据和这里read中 m 的数据不一样时,为true
}

func (m *Map) Load(key interface{}) (value interface{}, ok bool) {
    // 因read只读,线程安全,优先读取
    read, _ := m.read.Load().(readOnly)
    e, ok := read.m[key]
    
    // 如果read没有,并且dirty有新数据,那么去dirty中查找(read.amended=true:dirty和read数据不一致)
    // 暂时省略 后续代码
    .......
	
    }

上面的获取key对应的value过程甚至比RWMutex 读锁下获取map中的value还要高效,毕竟RWmutex 读取时还需要加上读锁,其底层是用atomic.AddInt32 操作,而sync.Map 则是用 atomic.load 获取map,atomic.AddInt32 的开销比atomic.load 的开销要大。

📢📢📢,所以,为什么我们说golang的sync.Map 在大量读的情况下性能极佳,因为在整个读取过程中没有锁开销,atomic.load 原子操作消耗极低。

但是如果后续又写入了新的键值对数据,那么 dirty map中就会又插入到新的键值对,dirty和read的数据又不一致了,read 的amended 将改为true。

并且由于之前dirty整体更新为read后,dirty字段置为nil了,所以,在更改amended时,也会将read中的所有未被删除的key同步到 dirty中

image.png

📢📢📢注意,为什么在dirty整体更新一次read map后,再写入新的键值对时,需要将read map中的数据全部同步到dirty,因为随着dirty的慢慢写入,后续读操作又会造成读miss的增加,最终会再次触发dirty map整体更新为readOnly map,amended 改为false,代表read map中又有所有键值对数据了,也就是会回到步骤三的操作,重复步骤三到步骤五的过程。

image.png

只有将read map中的数据全部同步到dirty ,才能保证后续的整体更新,不会造成丢失数据。

看到这里应该能够明白sync.Map的适合场景了,我来总结下,

sync.Map 适合读多写少的场景,大量的读操作可以通过只读取read map 拥有极好的性能。

而如果写操作增加,首先会造成read map中读取miss增加,会回源到dirty中读取,且dirty可能会频繁整体更新为read,回源读取,整体更新的步骤都是阻塞上锁的。

其次,写操作也会带来dirty和 read中数据频繁的不一致,导致read中的数据需要同步到dirty中,这个过程在键值对比较多时,性能损耗较大且整个过程是阻塞的。

所以sync.Map 并不适合大量写操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1539385.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Oracle数据库如果出现乱码,需要查看是否时字符集不一致导致乱码,这样解决

1、如果出现乱码&#xff0c;需要查看是否时字符集不一致导致乱码 以修改为ZHS16GBK字符集为例&#xff0c;具体字符集需要sql查询。 Oracle查看字符集 SELECT * FROM NLS_DATABASE_PARAMETERS p where p.PARAMETERNLS_CHARACTERSET; SELECT USERENV(language) FROM DUAL; 1.…

机器人路径规划:基于斑翠鸟优化算法(Pied Kingfisher Optimizer ,PKO)的机器人路径规划(提供MATLAB代码)

一、机器人路径规划介绍 移动机器人&#xff08;Mobile robot&#xff0c;MR&#xff09;的路径规划是 移动机器人研究的重要分支之&#xff0c;是对其进行控制的基础。根据环境信息的已知程度不同&#xff0c;路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或…

视频素材库哪个好?这8个短视频相关的优质素材网推荐看看

在这个数字化时代&#xff0c;视频内容的创作变得前所未有地重要。无论是短视频的快速制作&#xff0c;还是专业影片的精心编辑&#xff0c;找到合适的素材资源是每个视频创作者的基本需求。从高清视频片段、无水印的图片&#xff0c;到富有情感的音效&#xff0c;以下精选的网…

Java应用常见log框架介绍以及 如何用好Log

前言 合理使用日志对于Java应用程序的开发、部署和维护都至关重要。通过采用良好的日志记录实践,可以更好地监控应用程序的运行状况、排查问题并优化性能 日志系统与日志框架 日志系统 直接负责打印输出日志&#xff0c;提供完整的日志输出能力&#xff1a; JUL java.uti…

栅格地图路径规划:4种最新算法(小龙虾优化算法COA、螳螂搜索算法MSA、红尾鹰算法RTH、霸王龙优化算法TROA)求解机器人路径规划(提供MATLAB代码)

一、机器人路径规划介绍 移动机器人&#xff08;Mobile robot&#xff0c;MR&#xff09;的路径规划是 移动机器人研究的重要分支之&#xff0c;是对其进行控制的基础。根据环境信息的已知程度不同&#xff0c;路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或…

RIPGeo代码理解(七)test.py(加载检查点,然后测试)

​代码链接:RIPGeo代码实现 ├── preprocess.py # 预处理数据集并为模型运行执行IP聚类 ├── main.py # 运行模型进行训练和测试 ├── test.py #加载检查点,然后测试 一、导入各种模块和数据库 import torch.nnfrom lib.utils import * import argparse import…

paddlepaddle框架构建数据集进行分类问题的时候,会发现数据集在构建的过程中不会构建标签(花分类)

问题描述 在做一个paddlepaddle项目的时候&#xff0c;需要使用神经网络对他进行分类&#xff0c;数据集的结构如下图&#xff0c;这时候我们可以使用常用dataset方法对数据集进行构建。 这时候我们就会发现一个问题&#xff0c;就是这个矿建不是构建标签&#xff0c;也就是说…

IM系统设计之websocket消息转发

Websocket消息转发 项目地址&#xff1a;gitgithub.com:muyixiaoxi/Link.git 上周面试被面试官问到&#xff1a;“在分布式IM系统中&#xff0c;如何实现多个websocket集群之间的通信”。 我在思考了良久后回答&#xff1a;“不会”。 随着我的回答&#xff0c;我和面试官的…

【C++航海王:追寻罗杰的编程之路】stack

目录 1 -> stack的介绍和使用 1.1 -> stack的介绍 1.2 -> stack的使用 1.3 -> stack的模拟实现 1 -> stack的介绍和使用 1.1 -> stack的介绍 stack的文档介绍 1. stack是一种容器适配器&#xff0c;专门用在具有后进先出操作的上下文环境中&#xff0c…

React【Day1】

B站视频链接 一、React介绍 React由Meta公司开发&#xff0c;是一个用于 构建Web和原生交互界面的库 React的优势 相较于传统基于DOM开发的优势 组件化的开发方式不错的性能 相较于其它前端框架的优势 丰富的生态跨平台支持 React的市场情况 全球最流行&#xff0c;大…

案例实践 | 基于长安链的煤质检测智慧实验室

案例名称-煤质检测智慧实验室 ■ 建设单位 国能数智科技开发&#xff08;北京&#xff09;有限公司 ■ 用户群体 煤炭生产单位、电力单位、化工单位等产业链上下游单位 ■ 应用成效 化验效率提升50%&#xff0c;出验时间缩短40%&#xff0c;提高化验数据市场公信力 案例…

数据结构->手把手教入门栈与列队(基础)

✅作者简介&#xff1a;大家好&#xff0c;我是橘橙黄又青&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;橘橙黄又青-CSDN博客 1.什么是栈 1.1栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许…

利用Scala与Apache HttpClient实现网络音频流的抓取

概述 在当今数字化时代&#xff0c;网络数据的抓取和处理已成为许多应用程序和服务的重要组成部分。本文将介绍如何利用Scala编程语言结合Apache HttpClient工具库实现网络音频流的抓取。通过本文&#xff0c;读者将学习如何利用强大的Scala语言和Apache HttpClient库来抓取网…

IS210BPPCH1AEC的数据分析

GE IS210BPPCH1AEC 是一款专为石油和天然气行业设计的压力传感器。 该传感器可以监测油井、气井以及管道系统中的压力&#xff0c;并且具备数据分析和远程监控的能力。这使得它在确保油气生产过程安全和效率方面发挥关键作用。具体来看&#xff0c;以下是一些特点和应用&#x…

Webman全局异常捕获处理

最近在使用webman这个框架做项目开发&#xff0c;涉及到需要统一处理异常捕获。由于官网给的并不详细&#xff0c;于是自己实现了一下全局异常处理类。 一、配置效果 例如&#xff1a;我要在项目中统一返回json 格式数据&#xff0c;并不想在业务层写try,catch逻辑。 或者在业务…

校招应聘流程讲解

在整个应聘流程中&#xff0c;记得保持积极的态度、认真准备面试&#xff0c;同时也要对自己的能力和经验有清晰的认识&#xff0c;这样才能在竞争激烈的校园招聘中脱颖而出&#xff0c;成功获得心仪的工作机会. 1. 校招资源获取 想要参加校招&#xff0c;首先需要获取校招资…

操作系统内功篇:硬件结构之CPU是如何执行任务的?

一 CPU是如何读写数据的&#xff1f; 1.1 CPU架构(组成) 当代CPU一般是多核心的&#xff0c;每个核心都有自己的一个L1和L2Cache&#xff0c;L3Cache是一个CPU所有核心共享的&#xff0c;一个CPU只有一个。L1Cache分为数据缓存和指令缓存。 CPU有三层高速缓存的目的就是将Cac…

基于SSM+Jsp+Mysql的记账管理系统

开发语言&#xff1a;Java框架&#xff1a;ssm技术&#xff1a;JSPJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包…

C# Solidworks二次开发:获取主窗口API和创建新活动窗口API详解

今天要讲的是Solidworks中的两个API。 &#xff08;1&#xff09;Frame Method (ISldWorks)&#xff1a;获取SOLIDWORKS主框架。 下面是API中给出的例子&#xff1a; public void Main(){ModelDoc2 swModelDoc default(ModelDoc2);Frame swFrame default(Frame);ModelWindow…

jmeter之接口功能自动化

一、接口测试简述 接口&#xff1a;用来连接前端&#xff0c;后端还有移动端的程序模块。由于不同端的工作进度不一样&#xff0c;需要对最开始出来的接口进行接口测试。 接口分类&#xff1a;POST&#xff0c;GET&#xff0c;PUT&#xff0c;DELETE。 POST请求的数据是放在…