【LeetCode】--- 动态规划 集训(一)

news2024/11/13 10:53:23

目录

  • 一、1137. 第 N 个泰波那契数
    • 1.1 题目解析
    • 1.2 状态转移方程
    • 1.3 解题代码
  • 二、面试题 08.01. 三步问题
    • 2.1 题目解析
    • 2.2 状态转移方程
    • 2.3 解题代码
  • 三、746. 使用最小花费爬楼梯
    • 3.1 题目解析
    • 3.2 状态转移方程
    • 3.3 解题代码

一、1137. 第 N 个泰波那契数

题目地址: 1137. 第 N 个泰波那契数


泰波那契序列 Tn定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数 n,请返回第 n个泰波那契数 Tn的值。

示例 1:
输入:n = 4
输出:4
解释:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4
示例 2:
输入:n = 25
输出:1389537

1.1 题目解析

因为要求的是第n个泰波那契序列,所以我们可以创建一个长度为 n 的dp表,用来表示第i位置的泰波那契序列(即:dp[i]表示:第 i 个泰波那契序列的值)。

接下来便是初始化,因为 dp[i]位置是前三个数的和,所以为了后序填表时不越界,要先初始化前三个数。题目中已给出前三个值,完成初始化即可(dp[0] = 0; dp[1] = dp[2] = 1;)。

填表顺序是:从左到右,依次填表。从下标为 3 的位置开始填表。

返回值为:dp[n],即第 n 个位置的泰波那契序列的值。还需要注意的小细节是,当序列长度不足 3 时,要单独判断返回值。

1.2 状态转移方程

依据题目要求(已给出):dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];

1.3 解题代码

class Solution 
{
public:
    int tribonacci(int n) 
    {
        //1. 创建dp表
        //2. 初始化
        //3. 填表
        //4. 返回结束

        if(n == 0) return 0;
        if(n == 1 || n == 2) return 1;

        vector<int> dp(n + 1);
        dp[0] = 0, dp[1] = dp[2] = 1;

        for(int i = 3; i <= n ; ++i)
            dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];
        return dp[n];
    }
};

二、面试题 08.01. 三步问题

题目地址: 面试题 08.01. 三步问题


三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

示例1:
输入:n = 3
输出:4
说明: 有四种走法
示例2:
输入:n = 5
输出:13

2.1 题目解析

为了求到第 n 级台阶的方法数,可以定义一个长度为 n+1 的dp表,dp[i]表示:到 i 位置时,一共有多少种方法。

状态转移方程的确立,因为小孩可以一次走一级,两级或三级台阶,所以他可以从第 n-1, n-2 或 n-3 级台阶上到第 n 级台阶。所以到第 n 级台阶的总方法数,是到上述三种台阶的方法数总和。(以 i 位置的状态,最近的一步,来划分问题

在这里插入图片描述

接下来便是初始化,为了在填 dp 表时不越界(即取dp[i - 3]时),所以需要初始化前三个状态表的值(dp[1] = 1, dp[2] = 2, dp[3] = 4;)。还可以再多开一个位置,使台阶序号和 dp 表对应。

填表顺序:从左到右依次填表,从下标为 4 的位置开始填。

返回值:返回 dp[n],即到第 n 级台阶的方法数。n <= 3 时要单独判断,因为状态表从下标为 4 位置开始判断(利用最近的前三个状态)

2.2 状态转移方程

依据题目要求:dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];。还需要注意的是为了防止越界,顺应题目要求,要对结果模1000000007。那么便可写成如下格式:dp[i] = ((dp[i - 1] + dp[i - 2]) % num + dp[i - 3]) % num;

2.3 解题代码

class Solution 
{
public:
    int waysToStep(int n) 
    {
        //1. 创建dp表
        //2. 初始化
        //3. 填表
        //4. 返回结束

        if(n == 1 || n == 2) return n;
        if(n == 3) return 4;
        vector<int> dp(n + 1);
        dp[1] = 1, dp[2] = 2, dp[3] = 4;

        int num = 1e9 + 7;
        for(int i = 4; i <= n; ++i)
            dp[i] = ((dp[i - 1] + dp[i - 2]) % num + dp[i - 3]) % num;

            return dp[n];
    }
};

三、746. 使用最小花费爬楼梯

题目地址: 746. 使用最小花费爬楼梯


给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。

示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。

  • 支付 15 ,向上爬两个台阶,到达楼梯顶部。

总花费为 15 。

示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。

  • 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
  • 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
  • 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
  • 支付 1 ,向上爬一个台阶,到达楼梯顶部。

总花费为 6 。

3.1 题目解析

此题所求的是达到楼梯顶部的最低花费,那么我们便可定义一个长度为 n+1 的 dp 状态表。多开一个是因为,此处的楼梯顶部,不是数组cost.size(),而是最后一个位置的下一个。那么我们便可使用,dp[i]来表示:到达 i 位置时,最小花费。

状态转移方程的确立,可以根据最小花费,因为一次可以向上爬一个或两个台阶。那么到达第 i 级台阶的最小花费,便可用最近的状态推导 dp[i]即:1. 先到达 i - 1位置,然后支付cost[i - 1],走一步(dp[i - 1] + cost[i - 1]); 2. 先到达 i - 2位置,然后支付cost[i - 2],走两步(dp[i - 2] + cost[i - 2])。然后求两者最小值,这便是到达第 i 级台阶的最小费用。

在这里插入图片描述

初始化:为了后序填表不越界,且初始化的值不影响填表,所以可将前两个状态初始化为0(dp[0] = dp[1] = 0;)。

填表顺序:从左到右,依次填表。从下标为 2 的位置开始填。

返回值dp[n]即是到达楼梯顶部的最低费用。

3.2 状态转移方程

依据题目要求:dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i -2]);

3.3 解题代码

class Solution 
{
public:
    int minCostClimbingStairs(vector<int>& cost) 
    {
        //1. 创建dp表
        //2. 初始化
        //3. 填表
        //4. 返回结束

        int n = cost.size();
        vector<int> dp(n + 1);
        dp[0] = 0, dp[1] = 0;

        for(int i = 2; i <= n; ++i)
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        return dp[n];
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1537346.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FloodFill算法——岛屿数量

文章目录 题目解析算法解析代码解析 题目解析 岛屿数量 题目依旧是熟悉的配方&#xff0c;熟悉的味道&#xff0c;还是那个0还是那个1还是那个二维矩阵&#xff0c;这时候BFS和DFS闻着味就来了&#xff0c;我们来看一下这个题目&#xff0c;这个题目也很容易理解如下图有一个…

阿里云2核4G服务器租用价格和性能测评

阿里云2核4G服务器租用优惠价格&#xff0c;轻量2核4G服务器165元一年、u1服务器2核4G5M带宽199元一年、云服务器e实例30元3个月&#xff0c;活动链接 aliyunfuwuqi.com/go/aliyun 活动链接如下图&#xff1a; 阿里云2核4G服务器优惠价格 轻量应用服务器2核2G4M带宽、60GB高效…

市场复盘总结 20240322

仅用于记录当天的市场情况&#xff0c;用于统计交易策略的适用情况&#xff0c;以便程序回测 短线核心&#xff1a;不参与任何级别的调整&#xff0c;采用龙空龙模式 一支股票 10%的时候可以操作&#xff0c; 90%的时间适合空仓等待 二进三&#xff1a; 进级率中 36% 最常用…

力扣题库27题移除元素(c语言)

解法&#xff1a; int removeElement(int* nums, int numsSize, int val) {int src0,dst0;while(src<numsSize){if(nums[src]val){src;}else{nums[dst]nums[src];src;dst;}}return dst; }

SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现PSO-TCN-BiGRU-Attention粒子群算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述…

visual studio卸载几种方法

1、控制面板卸载&#xff1b; 2、有时候会发现控制面板卸载会失败&#xff0c;无法卸载&#xff0c;这时候要先把下面目录的关于visual studio的都删除&#xff0c;然后重启电脑后&#xff0c;重新安装vs即可。

C语言预编译#pragma宏的作用

在嵌入式编程中&#xff0c;#pragma 指令具有非常重要的作用&#xff0c;因为它允许开发者在不同的编译器之间传达特定的编译指令。由于嵌入式编程通常与硬件紧密相关&#xff0c;且资源有限&#xff0c;这些指令可以帮助开发者更有效地利用可用资源&#xff0c;优化程序&#…

基于python+vue的stone音乐播放器的设计与实现flask-django-php-nodejs

随着我国经济的高速发展与人们生活水平的日益提高&#xff0c;人们对生活质量的追求也多种多样。尤其在人们生活节奏不断加快的当下&#xff0c;人们更趋向于足不出户解决生活上的问题&#xff0c;stone音乐播放器展现了其蓬勃生命力和广阔的前景。与此同时&#xff0c;为解决用…

docker快速安装达梦数据库

docker快速安装达梦数据库 文章目录 docker快速安装达梦数据库前言环境准备下载镜像运行、配置容器 前言 因为公司需要将自己的底代码平台与客户的需求做适配&#xff0c;客户要求必须满足信创要求&#xff0c;使用达梦数据库。所以需要将原有的MySQL数据库与达梦数据库适配&a…

每日五道java面试题之springboot篇(一)

目录&#xff1a; 第一题. 什么是 Spring Boot&#xff1f;第二题. Spring Boot 有哪些优点&#xff1f;第三题. Spring Boot 的核心注解是哪个&#xff1f;它主要由哪几个注解组成的&#xff1f;第四题. 什么是 JavaConfig&#xff1f;第五题. Spring Boot 自动配置原理是什么…

来了,工业5.0

什么是工业5.0 “工业5.0”一词是由欧盟委员会引入和推广的&#xff0c;用于描述其对欧洲工业的愿景。 工业5.0的强调的不仅是技术&#xff0c;更注重是人性。提倡“以人为本”的思想。工业 5.0 不是专注于创造经济价值&#xff0c;而是激励企业探索如何通过提供更健康的工作…

排序算法记录(冒泡+快排+归并)

文章目录 前言冒泡排序快速排序归并排序 前言 冒泡 快排 归并&#xff0c;这三种排序算法太过经典&#xff0c;但又很容易忘了。虽然一开始接触雀氏这些算法雀氏有些头大&#xff0c;但时间长了也还好。主要是回忆这些算法干了啥很耗时间。 如果在笔试时要写一个o(nlogn)的…

java学习——集合

目录 一、集合框架介绍 1、集合与集合框架说明 2、使用集合框架原因 3、集合框架接口体系 二、Collection接口 1、Collection常用方法 2、AbstractCollection 三、迭代器 1、迭代器说明 2、自定义Collection集合 四、泛型 1、泛型说明 2、使用泛型方法 3、泛型通配…

哲♂学家带你深♂入了♂解结构体及结构体内存大小问题

目录 概要 一、结构体的声明 二、结构体变量的创建和初始化 三、结构体的特殊声明 四、结构体内存对齐 1、对齐原则 2、例一 对齐数 计算方法 3、例二 总结 概要 结构体是我们日常编程中经常要用到的一种自定义类型&#xff0c;使用起来也是十分的方便。接下来就由…

ts js vue 验证文件 MD5 值 spark-md5

ts js vue 验证文件 MD5 值 spark-md5 如何在前端中验证要上传的文件的 md5 值 一、安装 spark-md5 插件 需要用到 spark-md5 这个插件 官方 github&#xff1a;https://github.com/satazor/js-spark-md5/tree/master yarn add spark-md5 // 或 npm i spark-md5使用的时候引…

TCP | TCP协议格式 | 三次握手

1.TCP协议 为什么需要 TCP 协议 &#xff1f;TCP 工作在哪一层&#xff1f; IP网络层是不可靠的&#xff0c;TCP工作在传输层&#xff0c;保证数据传输的可靠性。 TCP全称为 “传输控制协议&#xff08;Transmission Control Protocol”&#xff09;。 TCP 是面向连接的、可靠…

KDB+Q | D1 | 学习资源 基础数据类型

官网会是主要的学习资源&#xff1a;https://code.kx.com/q/ 中文教程可能读起来会快一点&#xff1a; https://kdbcn.gitee.io/ 参考了还不错的学习经验帖&#xff1a;https://www.jianshu.com/p/488764d42627 KDB擅长处理时序数据&#xff0c; KDB数据库是后端数据库&…

MySQL数据库存储引擎MyISAM与InnoDB

前言 MySQL存储引擎是MySQL数据库中负责管理数据存储和检索的组件&#xff0c;不同的存储引擎提供了不同的功能和特性&#xff0c;可以根据实际需求选择合适的存储引擎来优化数据库性能和功能。以下是一些常见的MySQL存储引擎&#xff1a;InnoDB、MyISAM、MEMORY、NDB Cluster…

Ribbon知识点

1、通过类实现重写Ribbon规则 1.1注意 这个类一定不能跟启动类放在同一个包下面&#xff0c;不能被componentScan给扫描到。 需要如图放置&#xff1a; 要是被componentScan给扫描到&#xff0c;则会被所有的服务提供方所共享&#xff0c;那么就不能实现指定服务用不同的Ribbo…

权限提升-Windows权限提升篇溢出漏洞宝塔面板BypassCS插件化MSF模块化

知识点 1、Web到Win系统提权-权限差异原因 2、Web到Win系统提权-溢出漏洞&#xff08;MSF&CS&#xff09; 3、Web到Win系统提权-集成软件&#xff08;哥斯拉模块Bypass&#xff09; 章节点&#xff1a; 1、Web权限提升及转移 2、系统权限提升及转移 3、宿主权限提升及转移…