垃圾回收-垃圾回收中的相关概念

news2025/1/2 2:46:50

目录

System.gc()的理解

内存泄漏(Memory Leak)

内存溢出(OOM)

Stop The World

垃圾回收的串行、并行与并发

安全点与安全区域

强、软、弱、虚引用

强、软、弱、虚引用

终结器引用


System.gc()的理解

在默认情况下,通过system.gc()或者Runtime.getRuntime().gc() 的调用,会显式触发Full GC,同时对老年代和新生代进行回收,尝试释放被丢弃对象占用的内存。

然而System.gc() 调用附带一个免责声明,无法保证对垃圾收集器的调用。(不能确保立即生效)

JVM实现者可以通过System.gc() 调用来决定JVM的GC行为。而一般情况下,垃圾回收应该是自动进行的,无须手动触发,否则就太过于麻烦了。在一些特殊情况下,如我们正在编写一个性能基准,我们可以在运行之间调用System.gc()

public class SystemGCTest {
    public static void main(String[] args) {
        new SystemGCTest();
        System.gc();// 提醒JVM的垃圾回收器执行gc,但是不确定是否马上执行gc
        // 与Runtime.getRuntime().gc();的作用一样
        
        System.runFinalization();//强制执行使用引用的对象的finalize()方法
    }
​
    @Override
    protected void finalize() throws Throwable {
        super.finalize();
        System.out.println("SystemGCTest 重写了finalize()");
    }
}
内存泄漏(Memory Leak)

也称作“存储渗漏”。严格来说,只有对象不会再被程序用到了,但是GC又不能回收他们的情况,才叫内存泄漏。

但实际情况很多时候一些不太好的实践(或疏忽)会导致对象的生命周期变得很长甚至导致00M,也可以叫做宽泛意义上的“内存泄漏”。

尽管内存泄漏并不会立刻引起程序崩溃,但是一旦发生内存泄漏,程序中的可用内存就会被逐步蚕食,直至耗尽所有内存,最终出现OutOfMemory异常,导致程序崩溃。

注意,这里的存储空间并不是指物理内存,而是指虚拟内存大小,这个虚拟内存大小取决于磁盘交换区设定的大小。

举例

(1)单例模式 单例的生命周期和应用程序是一样长的,所以单例程序中,如果持有对外部对象的引用的话,那么这个外部对象是不能被回收的,则会导致内存泄漏的产生。

(2)一些提供close的资源未关闭导致内存泄漏 数据库连接(dataSourse.getConnection() ),网络连接(socket)和io连接必须手动close,否则是不能被回收的。

内存溢出(OOM)

OutOfMemoryError的解释是:没有空闲内存,并且垃圾收集器进行垃圾回收也无法提供更多内存。

首先说没有空闲内存的情况:说明Java虚拟机的堆内存不够。原因有二:

(1) Java虚拟机的堆内存设置不够。 比如:可能存在内存泄漏问题;也很有可能就是堆的大小不合理,比如我们要处理比较可观的数据量,但是没有显式指定JVM堆大小或者指定数值偏小。我们可以通过参数-Xms-Xmx来调整。

(2) 代码中创建了大量大对象,并且长时间不能被垃圾收集器收集(存在被引用) 对于老版本的Oracle JDK,因为永久代的大小是有限的,并且JVM对永久代垃圾回收(如,常量池回收、卸载不再需要的类型)非常不积极,所以当我们不断添加新类型的时候,永久代出现OutOfMemoryError也非常多见,尤其是在运行时存在大量动态类型生成的场合;类似intern字符串缓存占用太多空间,也会导致OOM问题。对应的异常信息,会标记出来和永久代相关:“java.lang.OutOfMemoryError: PermGen space"。 随着元数据区的引入,方法区内存已经不再那么窘迫,所以相应的OOM有所改观,出现OOM,异常信息则变成了:“java.lang.OutofMemoryError:Metaspace"。直接内存不足,也会导致OOM。

这里面隐含着一层意思是,在抛出OutOfMemoryError之前,通常垃圾收集器会被触发,尽其所能去清理出空间。

  • 例如:在引用机制分析中,涉及到JVM会去尝试回收软引用指向的对象等。

  • java.nio.BIts.reserveMemory()方法中,我们能清楚的看到,System.gc()会被调用,以清理空间。

当然,也不是在任何情况下垃圾收集器都会被触发的

  • 比如,我们去分配一个超大对象,类似一个超大数组超过堆的最大值,JVM可以判断出垃圾收集并不能解决这个问题,所以直接抛出OutOfMemoryError。

Stop The World

stop-the-World,简称STW,指的是GC事件发生过程中,会产生应用程序的停顿。停顿产生时整个应用程序线程都会被暂停,没有任何响应,有点像卡死的感觉,这个停顿称为STW。

可达性分析算法中枚举根节点(GC Roots)会导致所有Java执行线程停顿。

  • 分析工作必须在一个能确保一致性的快照中进行

  • 一致性指整个分析期间整个执行系统看起来像被冻结在某个时间点上

  • 如果出现分析过程中对象引用关系还在不断变化,则分析结果的准确性无法保证

被STW中断的应用程序线程会在完成GC之后恢复,频繁中断会让用户感觉像是网速不快造成电影卡带一样,所以我们需要减少STW的发生。

STW事件和采用哪款GC无关,所有的GC都有这个事件。

哪怕是G1也不能完全避免Stop-the-World情况发生,只能说垃圾回收器越来越优秀,回收效率越来越高,尽可能地缩短了暂停时间。

STW是JVM在后台自动发起和自动完成的。在用户不可见的情况下,把用户正常的工作线程全部停掉。

垃圾回收的串行、并行与并发

Java中的并行与并发:

  • 并行(Parallelism):指的是在同一时刻有多个线程或任务同时执行的能力。在计算机系统中,通常指的是在多核处理器上同时执行多个线程或任务,以提高系统的性能和效率。在Java中,可以使用并行流(Parallel Streams)来实现并行处理数据流,也可以使用线程池来创建多个线程并行执行任务。

  • 并发(Concurrency):指的是在同一时间段内有多个线程在同一个处理器上执行的能力。在Java中,可以使用多线程来实现并发编程,实现多个任务的同时执行。并发编程需要考虑到线程间的通信和同步,以避免竞态条件(Race Condition)等问题。

垃圾回收器中的并行与并发

并行(Parallel)

指多条垃圾收集线程并行工作,但此时用户线程仍处于等待状态。如ParNew、Parallel Scavenge、Parallel Old;

串行(Serial)

相较于并行的概念,单线程执行。如果内存不够,则程序暂停,启动JM垃圾回收器进行垃圾回收。回收完,再启动程序的线程。

并发(Concurrent)

指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),垃圾回收线程在执行时不会停顿用户程序的运行。用户程序在继续运行,而垃圾收集程序线程运行于另一个CPU上;如:CMS、G1

安全点与安全区域

安全点

程序执行时并非在所有地方都能停顿下来开始GC,只有在特定的位置才能停顿下来开始GC,这些位置称为“安全点(Safepoint)”。

Safe Point的选择很重要,如果太少可能导致GC等待的时间太长,如果太频繁可能导致运行时的性能问题。大部分指令的执行时间都非常短暂,通常会根据“是否具有让程序长时间执行的特征”为标准。比如:选择一些执行时间较长的指令作为Safe Point,如方法调用、循环跳转和异常跳转等。

如何在GC发生时,检查所有线程都跑到最近的安全点停顿下来呢?

抢先式中断:(目前没有虚拟机采用了)

  • 首先中断所有线程。如果还有线程不在安全点,就恢复线程,让线程跑到安全点。

主动式中断

  • 设置一个中断标志,各个线程运行到Safe Point的时候主动轮询这个标志,如果中断标志为真,则将自己进行中断挂起。(有轮询的机制)

安全区域

Safepoint 机制保证了程序执行时,在不太长的时间内就会遇到可进入GC的Safepoint。但是,程序“不执行”的时候呢?例如线程处于Sleep 状态或Blocked 状态,这时候线程无法响应JVM的中断请求,“走”到安全点去中断挂起,JVM也不太可能等待线程被唤醒。对于这种情况,就需要安全区域(Safe Region)来解决。

安全区域是指在一段代码片段中,对象的引用关系不会发生变化,在这个区域中的任何位置开始GC都是安全的。我们也可以把Safe Region看做是被扩展了的Safepoint。

实际执行时:

当线程运行到Safe Region的代码时,首先标识已经进入了Safe Relgion,如果这段时间内发生GC,JVM会忽略标识为Safe Region状态的线程

当线程即将离开Safe Region时,会检查JVM是否已经完成GC,如果完成了,则继续运行,否则线程必须等待直到收到可以安全离开Safe Region的信号为止;

强、软、弱、虚引用

在JDK1.2版之后,Java对引用的概念进行了扩充,将引用分为:强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Phantom Reference)这4种引用强度依次逐渐减弱。

除强引用外,其他3种引用均可以在java.lang.ref包中找到它们的身影。如下图,显示了这3种引用类型对应的类,开发人员可以在应用程序中直接使用它们。

Reference子类中只有终结器引用是包内可见的,其他3种引用类型均为public,可以在应用程序中直接使用

  • 强引用(StrongReference):最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj = new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。

  • 软引用(SoftReference):在系统将要发生内存溢出之前,将会把这些对象列入回收范围之中进行第二次回收。如果这次回收后还没有足够的内存,才会回收掉被软应用关联的对象。

  • 弱引用(WeakReference):被弱引用关联的对象只能生存到下一次垃圾收集之前。当垃圾收集器工作时,无论内存空间是否足够,都会回收掉被弱引用关联的对象。

  • 虚引用(PhantomReference):一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来获得一个对象的实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。

强、软、弱、虚引用

在JDK1.2版之后,Java对引用的概念进行了扩充,将引用分为:强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Phantom Reference)这4种引用强度依次逐渐减弱。

除强引用外,其他3种引用均可以在java.lang.ref包中找到它们的身影。如下图,显示了这3种引用类型对应的类,开发人员可以在应用程序中直接使用它们。

Reference子类中只有终结器引用是包内可见的,其他3种引用类型均为public,可以在应用程序中直接使用

  • 强引用(StrongReference):最传统的“引用”的定义,是指在程序代码之中普遍存在的引用赋值,即类似“Object obj = new Object()”这种引用关系。无论任何情况下,只要强引用关系还存在,垃圾收集器就永远不会回收掉被引用的对象。

  • 软引用(SoftReference):在系统将要发生内存溢出之前,将会把这些对象列入回收范围之中进行第二次回收。如果这次回收后还没有足够的内存,才会回收掉被软应用关联的对象。

  • 弱引用(WeakReference):被弱引用关联的对象只能生存到下一次垃圾收集之前。当垃圾收集器工作时,无论内存空间是否足够,都会回收掉被弱引用关联的对象。

  • 虚引用(PhantomReference):一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来获得一个对象的实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。

强引用

在Java程序中,最常见的引用类型是强引用(普通系统99%以上都是强引用),也就是我们最常见的普通对象引用,也是默认的引用类型。

当在Java语言中使用new操作符创建一个新的对象,并将其赋值给一个变量的时候,这个变量就成为指向该对象的一个强引用。

强引用的对象是可触及的,垃圾收集器就永远不会回收掉被引用的对象。

对于一个普通的对象,如果没有其他的引用关系,只要超过了引用的作用域或者显式地将相应(强)引用赋值为nu11,就是可以当做垃圾被收集了,当然具体回收时机还是要看垃圾收集策略。

相对的,软引用、弱引用和虚引用的对象是软可触及、弱可触及和虚可触及的,在一定条件下,都是可以被回收的。所以,强引用是造成Java内存泄漏的主要原因之一。

StringBuffer str = new StringBuffer("hello");
StringBuffer str1 = str;

本例中的两个引用,都是强引用,强引用具备以下特点:

  • 强引用可以直接访问目标对象。

  • 强引用所指向的对象在任何时候都不会被系统回收,虚拟机宁愿抛出OOM异常,也不会回收强引用所指向对象。

  • 强引用可能导致内存泄漏。

软引用

软引用是用来描述一些还有用,但非必需的对象。只被软引用关联着的对象,在系统将要发生内存溢出异常前,会把这些对象列进回收范围之中进行第二次回收,如果这次回收还没有足够的内存,才会抛出内存溢出异常。

软引用通常用来实现内存敏感的缓存。比如:高速缓存就有用到软引用。如果还有空闲内存,就可以暂时保留缓存,当内存不足时清理掉,这样就保证了使用缓存的同时,不会耗尽内存。

垃圾回收器在某个时刻决定回收软可达的对象的时候,会清理软引用,并可选地把引用存放到一个引用队列(Reference Queue)。

类似弱引用,只不过Java虚拟机会尽量让软引用的存活时间长一些,迫不得已才清理。

在JDK1.2版之后提供了java.lang.ref.SoftReference类来实现软引用

Object obj = new Object();
SoftReference<Object> sf = new SoftReference<>();
obj = null;

弱引用

弱引用也是用来描述那些非必需对象,只被弱引用关联的对象只能生存到下一次垃圾收集发生为止。在系统GC时,只要发现弱引用,不管系统堆空间使用是否充足,都会回收掉只被弱引用关联的对象。

但是,由于垃圾回收器的线程通常优先级很低,因此,并不一定能很快地发现持有弱引用的对象。在这种情况下,弱引用对象可以存在较长的时间。

弱引用和软引用一样,在构造弱引用时,也可以指定一个引用队列,当弱引用对象被回收时,就会加入指定的引用队列,通过这个队列可以跟踪对象的回收情况。

软引用、弱引用都非常适合来保存那些可有可无的缓存数据。如果这么做,当系统内存不足时,这些缓存数据会被回收,不会导致内存溢出。而当内存资源充足时,这些缓存数据又可以存在相当长的时间,从而起到加速系统的作用。

在JDK1.2版之后提供了WeakReference类来实现弱引用

Object obj = new Object();
WeakReference<Object> sf = new WeakReference<>(obj);
obj = null;

弱引用对象与软引用对象的最大不同就在于,当GC在进行回收时,需要通过算法检查是否回收软引用对象,而对于弱引用对象,GC总是进行回收。弱引用对象更容易、更快被GC回收。

比如可以用WeakHashMap用来存储图片信息,可以在内存不足的时候,及时回收,避免了OOM

ThreadLocalMap中的key就是弱引用。

虚引用

也称为“幽灵引用”或者“幻影引用”,是所有引用类型中最弱的一个。

一个对象是否有虚引用的存在,完全不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它和没有引用几乎是一样的,随时都可能被垃圾回收器回收。

它不能单独使用,也无法通过虚引用来获取被引用的对象。当试图通过虚引用的get()方法取得对象时,总是null

为一个对象设置虚引用关联的唯一目的在于跟踪垃圾回收过程。比如:能在这个对象被收集器回收时收到一个系统通知。

虚引用必须和引用队列一起使用。虚引用在创建时必须提供一个引用队列作为参数。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象后,将这个虚引用加入引用队列,以通知应用程序对象的回收情况。

由于虚引用可以跟踪对象的回收时间,因此,也可以将一些资源释放操作放置在虚引用中执行和记录。

在JDK1.2版之后提供了PhantomReference类来实现虚引用。

Object obj = new Object(); 
ReferenceQueue phantomQueue = new ReferenceQueue();
PhantomReference<Object> sf = new PhantomReference<>(obj, phantomQueue);
obj = null;

终结器引用

它用于实现对象的finalize() 方法,也可以称为终结器引用。无需手动编码,其内部配合引用队列使用。

在GC时,终结器引用入队。由Finalizer线程通过终结器引用找到被引用对象调用它的finalize()方法,第二次GC时才回收被引用的对象

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1535710.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【项目】基于YOLOv8和RotNet实现圆形滑块验证码(拼图)自动识别(通过识别中间圆形的角度实现)

TOC 一、引言 1.1 实现目标 要达到的效果是使用算法预测中间圆形的角度&#xff0c;返回给服务器&#xff0c;实现自动完成验证码的问题。要实现的内容如下图所示。 1.2 实现思路 思路1&#xff08;效果较差&#xff09;&#xff1a;以RotNet要实现的验证码识别为灵感&…

【技术栈】Redis 的理解与数据存储格式

SueWakeup 个人主页&#xff1a;SueWakeup 系列专栏&#xff1a;学习技术栈 个性签名&#xff1a;保留赤子之心也许是种幸运吧 本文封面由 凯楠&#x1f4f8; 友情提供 目录 相关传送门 1. NOSQL和关系型数据库比较 2. 主流的NOSQL产品 3. Redis的理解 4. redis数据存储格式…

Golang标准库fmt深入解析与应用技巧

Golang标准库fmt深入解析与应用技巧 前言fmt包的基本使用打印与格式化输出函数Print系列函数格式化字符串 格式化输入函数小结 字符串格式化基本类型的格式化输出自定义类型的格式化输出控制格式化输出的宽度和精度小结 错误处理与fmt使用fmt.Errorf生成错误信息fmt包与错误处理…

vue/vite添加地图

最简单的方式&#xff0c;不论vue2、vue3、vite均适用&#xff0c;例如以高德为例&#xff1a; index.html 引入 <scriptsrc"https://webapi.amap.com/maps?v1.4.15&key您的key&pluginAMap.ToolBar,AMap.MouseTool,AMap.DistrictSearch,AMap.ControlBar&quo…

filezilla客户端的应用以及ftplftpwget的用法

filezilla的应用 用户的配置查看上一篇文章FTP3种用户的配置 进入filezilla软件测试 用yy用户登录发现可以上传下载创建删除 再用cc用户登录发现不能上传不能删除不能创建只能下载 ftp&lftp&wget客户端的应用 以命令行的方式连接ftp&#xff0c;一般只会用到上…

MAC废纸篓删掉还能复原吗 MAC废纸篓倾倒掉的文件怎么恢复 删除的东西在哪里可以找回来 怎么找回已删除的文件

MAC系统中的废纸篓&#xff08;Trash&#xff09;通常指用来临时存放用户即将丢弃的文件的地方。MAC系统的废纸篓功能相当于Windows系统的垃圾回收站&#xff0c;通过废纸篓删除的文件&#xff0c;一般是无法从系统中操作还原。那么&#xff0c;MAC废纸篓删掉还能复原吗&#x…

Linux系统(四)- 进程初识 | 环境变量 | 进程地址空间

~~~~ 前言冯诺依曼体系结构&#xff08;重要&#xff09;总览CPU工作方式什么是指令集&#xff1f;CPU为什么只和内存打交道&#xff08;数据交换&#xff09;&#xff1f;木桶效应&#xff1a;在数据层面的结论程序运行为什么要加载到内存&#xff1f; 进一步理解计算机体系结…

应用APM-如何配置Prometheus + Grafana监控springboot应用

文章目录 概述在Spring Boot应用中集成Micrometerspringboot配置修改 Docker安装Prometheus和Grafanaprometheus配置grafana配置启动Prometheus和Grafana在Grafana中配置数据源创建Grafana仪表盘配置Grafana告警&#xff08;可选&#xff09;监控和分析 概述 配置Prometheus和…

NASA数据集——2017 年来自 Arctic-CAP 的大气中 CO、CO2 和 CH4 浓度剖面图

简介 ABoVE: Atmospheric Profiles of CO, CO2 and CH4 Concentrations from Arctic-CAP, 2017 文件修订日期&#xff1a;2019-05-01 数据集版本: 1 数据集摘要 本数据集提供了 2017 年 4 月至 11 月北极碳飞机剖面&#xff08;Arctic-CAP&#xff09;月度采样活动期间阿拉…

MIT的研究人员最近开发了一种名为“FeatUp”的新算法,这一突破性技术为计算机视觉领域带来了高分辨率的洞察力

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

【冥想X理工科思维】场景10:长期项目的焦虑和压力

冥想音频合集&#xff1a;职场解压冥想音频 压力场景&#xff1a; 在长期项目中&#xff0c;如何定期冥想帮我保持耐心和持久性&#xff1f; 点击看大图&#xff1a; 详细说明&#xff1a;通过这个冥想流程&#xff0c;你可以帮助自己在长期项目中保持耐心、坚持和放松的状态。…

SAP前台处理:物料主数据创建<MM01>之会计视图

一、背景&#xff1a; 终于来到了物料主数据&#xff0c;我觉得物料账是SAP最重要的一项发明&#xff0c;也一直是SAP的一项重要优势&#xff0c;物料账记录了一个个物料的生生不息&#xff1b; 本章主要讲解物料主数据和财务相关的主要内容&#xff1a;这里特别提示由于作者…

类和对象-4

文章目录 前言const成员函数取地址及const取地址操作符重载构造函数续explicit static成员友元内部类匿名对象 前言 在前面的文章中&#xff0c;我们了解到了类的四个默认成员函数&#xff1a;构造、析构、拷贝构造和赋值重载。接下来我们会继续学习剩下的两个默认成员函数以及…

CAD建筑版2024 安装教程

CAD建筑版是一种专门用于建筑设计和绘图的CAD软件版本。它提供了专业的建筑设计工具和功能&#xff0c;帮助建筑师、设计师和工程师在建筑领域进行快速、准确和高效的设计工作。 CAD建筑版具备建筑相关的库和元素&#xff0c;用户可以方便地使用预定义的建筑符号和元素进行建筑…

二叉树|104.二叉树的最大深度 111.二叉树的最小深度

104.二叉树的最大深度 力扣题目链接 class solution { public:int getdepth(TreeNode* node) {if (node NULL) return 0;int leftdepth getdepth(node->left); // 左int rightdepth getdepth(node->right); // 右int depth 1 max(leftdepth, rightdepth…

嵌入式-4种经典继电器驱动电路-单片机IO端口/三极管/达林顿管/嵌套连接

文章目录 一&#xff1a;继电器原理二&#xff1a;单片机驱动电路三&#xff1a;经典继电器驱动电路方案3.1 继电器驱动电路方案一&#xff1a;I/O端口灌电流方式的直接连接3.1.1 方案一的继电器特性要求3.1.2 方案一可能会损坏I/O口 3.2 继电器驱动电路方案二&#xff1a;三极…

记录一次基于AES加密的恶意软件逆向分析和解密过程(含文件)

导入(Imports)和字符串 首先,用IDA或Ghidra加载文件test.dat,文件为64位文件 IDA点击View==>Open subviews==>Imports,查看导入信息 Ghidra可以直接看到 可以看到,导入函数有: __printf_chk, malloc, __isoc99_sscanf, putchar, __stack_chk_fail, __cxa_fina…

安捷伦Agilent E8361C网络分析仪

181/2461/8938产品概述&#xff1a; 安捷伦e 8361 c网络分析仪提供通用网络分析&#xff0c;可选软件和/或硬件为您的应用定制-如多端口、脉冲射频等。 安捷伦E8361C网络分析仪的显示窗口数量不限&#xff0c;可以调整大小和重新排列&#xff0c;每个窗口最多有24条活动轨迹和…

CSS 脱离标准文档流 浮动

浮动 在标准流当中&#xff0c;元素或者标签在页面上摆放的时候会出现不如意的地方。要想解决这些问题可以采用脱离标准流的方式来进行解决这些问题&#xff0c;脱离标准流也称为脱离文档流。 脱离标准流的解决方式有三种&#xff0c;一种是浮动&#xff0c;另外一种是固定定位…

【Flask】Flask项目结构初识

1.前提准备 Python版本 # python 3.8.0 # 查看Python版本 python --version 安装第三方 Flask pip install flask # 如果安装失败&#xff0c;可以使用 -i&#xff0c;指定使用国内镜像源 # 清华镜像源&#xff1a;https://pypi.tuna.tsinghua.edu.cn/simple/ 检查 Flask 是…