NASA数据集——2017 年来自 Arctic-CAP 的大气中 CO、CO2 和 CH4 浓度剖面图

news2025/1/4 18:39:18

简介

ABoVE: Atmospheric Profiles of CO, CO2 and CH4 Concentrations from Arctic-CAP, 2017

文件修订日期:2019-05-01

数据集版本: 1

数据集摘要

本数据集提供了 2017 年 4 月至 11 月北极碳飞机剖面(Arctic-CAP)月度采样活动期间阿拉斯加和加拿大育空及西北地区上空大气一氧化碳 (CO)、二氧化碳 (CO2)、甲烷 (CH4) 和水蒸气浓度的原位机载测量值,以及气温、气压、相对湿度和风速值。观测数据以 10 秒为间隔取平均值,并报告样本数(N)和标准偏差。在这六次月度活动中的每一次活动中,飞越北极-北方脆弱性实验(ABoVE)区域的飞行都包括从地表到 6 千米高度的 25 个垂直剖面,所选位置是对常规长期垂直剖面、遥感数据和地面通量塔测量结果的补充。
这些数据是为北极-CAP 项目收集的,以捕捉北部高纬度碳循环的时空动态,作为 ABoVE 的一部分。

该数据集有一个 NetCDF (.nc) 格式的数据文件。

Arctic-CAP 飞行线路(橙色)对阿拉斯加的北极和北方地区以及加拿大的育空地区和西北地区进行了采样。月度活动从 4 月持续到 11 月,捕捉了 2017 年生长季节的碳动态。图钉标出了每个月活动期间获取的 25 个垂直剖面的位置。

作为 ABoVE 的一部分,收集这些数据是为了捕捉北部高纬度碳循环的时空动态。

项目:北极-北方脆弱性实验

北极-北方脆弱性实验(ABoVE)是美国国家航空航天局(NASA)陆地生态计划的一项野外活动,于 2016 年至 2021 年期间在阿拉斯加和加拿大西部进行。ABoVE 的研究将基于实地的过程级研究与机载和卫星传感器获得的地理空间数据产品联系起来,为提高分析和建模能力奠定了基础,而分析和建模能力是了解和预测生态系统反应及社会影响所必需的。

空间覆盖范围: 阿拉斯加和加拿大

上图 参考地点:

域:核心和扩展

州/地区: 加拿大阿拉斯加州、育空地区和西北地区阿拉斯加和加拿大育空及西北地区

网格单元:Ah000v000, Ah000v001, Ah001v001, Ah002v001

空间分辨率: 点位置。飞机速度为 170 海里/秒(87.5 米/秒)时,一个 10 秒平均间隔覆盖约 875 米的距离。

SiteWesternmost LongitudeEasternmost LongitudeNorthernmost LatitudeSouthernmost Latitude
Alaska and Canada-166.04539-104.112471.28739940.0387

数据文件信息

该数据集有一个 NetCDF (.nc) 格式的数据文件。

对于每个变量,在 2017-04-26 至 2017-11-05 期间的 55 次单独飞行中收集了 107 400 个观测值(10 秒平均值)。

表 1.  列出 55 次独特飞行及其各自活动和起止地点的汇总表。Flight_ID 格式为飞行开始的日期(YYYYMMDD)。请注意,开始和结束地点并不一定表示当天的完整飞行路径。

 

CampaignFlight IDlat_startlon_start Start_loclat_endlon_endEnd_loc
Transit flight2017042640.0391-105.2322Colorado62.4684-114.4433Yellowknife
April-May2017042762.4702-114.4493Yellowknife62.469-114.4441Yellowknife
2017042862.4707-114.4517Yellowknife68.3039-133.4776Inuvik
2017042968.3033-133.5016Inuvik64.8053-147.8663Fairbanks
2017043064.805-147.8816Fairbanks64.5093-165.3624Nome
2017050164.5078-165.4506Nome64.8219-147.8505Fairbanks
2017050364.8044-147.8827Fairbanks60.7129-135.0704Whitehorse
2017050460.7172-135.0731Whitehorse62.4704-114.4502Yellowknife
June2017060662.4657-114.4295Yellowknife68.3039-133.4776Inuvik
2017060768.3033-133.5Inuvik64.806-147.8651Fairbanks
2017060864.8032-147.8849Fairbanks64.5114-165.443Nome
2017060964.5083-165.4497Nome64.8051-147.8667Fairbanks
2017061364.8131-147.8667Fairbanks64.8064-147.8643Fairbanks
2017061464.8135-147.866Fairbanks60.5655-151.2556Anchorage
2017061859.6415-151.4882Anchorage60.7152-135.0678Whitehorse
2017061960.7121-135.0692Whitehorse62.4681-114.4402Yellowknife
July2017070962.4708-114.4522Yellowknife62.4697-114.4434Yellowknife
2017071062.4704-114.4504Yellowknife68.3035-133.4927Inuvik
2017071268.3033-133.4994Inuvik64.8215-147.8513Fairbanks
2017071364.8035-147.8843Fairbanks64.5127-165.4405Nome
2017071464.508-165.4503Nome64.8096-147.8584Fairbanks
2017071764.8135-147.866Fairbanks64.811-147.8705Fairbanks
2017071864.8266-147.8419Fairbanks64.8205-147.8531Fairbanks
2017071964.2617-146.0123Fairbanks60.7157-135.0721Whitehorse
2017072160.7175-135.0734Whitehorse62.4701-114.4435Yellowknife
August2017081756.6532-111.2097Fort McMurray68.3038-133.4824Inuvik
2017081868.3034-133.4991Inuvik64.8203-147.8535Fairbanks
2017082164.8134-147.8662Fairbanks64.8082-147.8609Fairbanks
2017082364.826-147.8429Fairbanks64.5106-165.444Nome
2017082464.7501-164.3066Quartz Creek65.4121-164.6727Quartz Creek
2017082664.5178-165.43Nome64.5125-165.441Nome
2017082764.5085-165.4491Nome64.8219-147.8504Fairbanks
2017082864.8121-147.8686Fairbanks60.7146-135.0712Whitehorse
2017082960.7179-135.0737Whitehorse62.4699-114.4435Yellowknife
2017083062.4702-114.4493Yellowknife62.4691-114.4448Yellowknife
September2017090862.4656-114.4292Yellowknife60.7135-135.0665Whitehorse
2017091060.7186-135.0742Whitehorse60.9571-137.4537Whitehorse
2017091360.7178-135.0737Whitehorse64.8206-147.8529Fairbanks
2017091564.8128-147.8672Fairbanks70.1957-148.4543Deadhorse
2017091764.8137-147.8656Fairbanks64.5112-165.4482Nome
2017091864.5094-165.4366Nome64.8093-147.859Fairbanks
2017092164.8131-147.8667Fairbanks64.8091-147.8593Fairbanks
2017092464.8134-147.8661Fairbanks64.8112-147.8702Fairbanks
2017092764.8124-147.868Fairbanks62.4685-114.4421Yellowknife
2017092862.471-114.4527Yellowknife55.1845-118.8811Grand Prairie
October-November2017101856.6532-111.2067Fort McMurray62.4604-114.442Yellowknife
2017102162.4658-114.4297Yellowknife68.3036-133.4895Inuvik
2017102268.3042-133.4667Inuvik64.8215-147.8512Fairbanks
2017102364.8126-147.8676Fairbanks64.8077-147.8766Fairbanks
2017102564.8039-147.8836Fairbanks64.8091-147.874Fairbanks
2017103164.8036-147.8842Fairbanks64.8082-147.8757Fairbanks
2017110164.8264-147.8423Fairbanks64.8099-147.8726Fairbanks
2017110264.8041-147.8832Fairbanks60.7151-135.0716Whitehorse
2017110460.7029-135.0622Whitehorse55.1845-118.8797Grand Prairie
Transit flight2017110555.1845-118.874Grand Prairie40.209-104.9237Colorado

数据文件变量 

VariableUnits/formatDescription
altitudem.a.s.l.Sample altitude (GPS altitude) in meters above sea level
flight_idYYYYMMDDA unique number identifying each flight. The format is the date in YYYYMMDD on which the flight began. See Table 1.
CH4nmol per molMole fraction of methane in dry air. Average of all measurements made in the time interval. Mole fraction reported in units of nanomole per mol (1e-9 mol per mol of dry air); equivalent to ppb (parts per billion). Fill value: -9999
CH4_nvalueNumber of individual measurements used to compute reported value. Fill value: -9
CH4_stdvnmol per molStandard deviation of all measurements made in the time interval. A value of 0 occurs when nvalue is equal to 1. The mole fraction reported in units of nanomole per mol (1e-9 mol per mol of dry air). Fill value: -9999
CH4_uncnmol per molEstimated uncertainty of the reported value. May be a single average uncertainty value for the whole dataset. The mole fraction reported in units of nanomole per mol (1e-9 mol per mol of dry air). Fill value: -9999
CO2umol per molMole fraction of carbon dioxide in dry air; average of all measurements made in the time interval. Mole fraction reported in units of micromole per mole (1e-6 mol per mol of dry air); equivalent to ppm (parts per million). Fill value: -9999
CO2_nvalueNumber of individual measurements used to compute reported value. Fill value: -9
CO2_stdvumol per molStandard deviation of all measurements made in the time interval. A value of 0 occurs when nvalue is equal to 1. The mole fraction reported in units of micromole per mole (1e-6 mol per mol of dry air); equivalent to ppm (parts per million). Fill value: -9999
CO2_uncumol per molEstimated uncertainty of the reported value. May be a single average uncertainty value for the whole dataset. The mole fraction reported in units of micromole per mole (1e-6 mol per mol of dry air); equivalent to ppm (parts per million).Fill value: -9999
COnmol per molMole fraction of carbon monoxide in dry air; average of all measurements made in the time interval. Mole fraction reported in units of nanomole per mol (1e-9 mol per mol of dry air); equivalent to ppb (parts per billion).
CO_nvalueNumber of individual measurements used to compute reported value. Fill value: -9
CO_stdvnmol per molStandard deviation of all measurements made in the time interval. A value of 0 occurs when nvalue is equal to 1. The mole fraction reported in units of nanomole per mol (1e-9 mol per mol of dry air). Fill value: -9999
CO_uncnmol per molEstimated uncertainty of the reported value. May be a single average uncertainty value for the whole dataset. The mole fraction reported in units of nanomole per mol (1e-9 mol per mol of dry air). Fill value: -9999
H2O%Water vapor; Average of all measurements made in the time interval. Fill value: -9999
H20_nvalueNumber of individual measurements used to compute reported value. Fill value: -9
H20_stdv%Standard deviation of all measurements made in the time interval. A value of 0 occurs when nvalue is equal to 1. Fill value: -9999
H2O_unc%Estimated uncertainty of the reported value. May be a single average uncertainty value for the whole dataset
latitudeDecimal degreesLatitude at which air sample was collected
longitudeDecimal degreesLongitude at which air sample was collected
TDegrees KAir temperature from the Vaisala instrument; average of all measurements made in the time interval. Not calibrated
T_nvalueNumber of individual measurements used to compute reported value. Fill value: -9
T_stdvDegrees KStandard deviation of all measurements made in the time interval. A value of 0 occurs when nvalue is equal to 1
T_uncDegrees KEstimated uncertainty of the reported value. May be a single average uncertainty value for the whole dataset. Fill value: -9999
PPaAir pressure; average of all measurements made in the time interval. Not calibrated. Measuring instrument: Picarro G2401
P_nvaluePaNumber of individual measurements used to compute reported value. Fill value: -9
P_stdvPaStandard deviation of all measurements made in the time interval. A value of 0 occurs when nvalue is equal to 1. Fill value: -9999
P_uncPaEstimated uncertainty of the reported value. May be a single average uncertainty value for the whole dataset. Fill value: -9999
profile_idA unique integer greater than 0 for each profile on each flight number; a value of 0 means that those data are not part of a profile 
RH%Relative humidity; average of all measurements made in the time interval. Not calibrated
RH_nvalue%Number of individual measurements used to compute reported value. Fill value: -9
RH_stdv%Standard deviation of all measurements made in the time interval. A value of 0 occurs when nvalue is equal to 1. Fill value: -9999
RH_unc%Estimated uncertainty of the reported value. May be a single average uncertainty value for the whole dataset. Fill value: -9999
timeseconds since 1970-01-01T00:00:00ZNumber of seconds since January 1, 1970 in UTC. Time-averaged values are reported at the beginning of the averaging interval 
time_componentsYMDHMSCalendar time components as integers. Times and dates are UTC. Time-averaged values are reported at the beginning of the averaging interval. Provided in the order: year, month, day, hour, minute, second  
time_decimalDecimal year in UTC. Time-averaged values are reported at the beginning of the averaging interval 
um/sEastward wind (Aspen instrument); Average of all measurements made in the time interval. Aircraft calibrated. Fill value: -9999
u_nvaluem/sNumber of individual measurements used to compute reported value. Fill value: -9
u_stdvm/sStandard deviation of all measurements made in the time interval. A value of 0 occurs when nvalue is equal to 1. Fill value: -9999
u_uncm/sEstimated uncertainty of the reported value. May be a single average uncertainty value for the whole dataset. Fill value: -9999
vm/sNorthward wind (Aspen instrument); Average of all measurements made in the time interval. Aircraft calibrated. Fill value: -9999
v_nvaluem/sNumber of individual measurements used to compute reported value. Fill value: -9
v_stdvm/sStandard deviation of all measurements made in the time interval. A value of 0 occurs when nvalue is equal to 1. Fill value: -9999
v_uncm/sEstimated uncertainty of the reported value. May be a single average uncertainty value for the whole dataset. Fill value: -9999

用户说明:变量 "profile_id "用于识别飞行过程中属于垂直剖面的观测数据。大于 0 的唯一整数标识每次飞行的每个剖面(flight_id)。数值为 0 表示这些数据不属于垂直剖面的一部分。

 应用与推导

北极北方生态系统(ABE)的地表气温、海冰覆盖率和永久冻土的巨大变化可能会对关键生态系统服务和依赖于北极北方生态系统的人类社会产生重大影响。为了预测北极地区气候系统持续变化的结果,有必要通过了解空间变化和年际变化的驱动过程来了解北极地区生态系统的脆弱性。

这些数据有助于我们理解和预测二氧化碳和甲烷的陆地-大气交换模型,从而更好地理解这些温室气体对 ABE 的反馈作用。每次活动都在本图上方列出的约 25 个地点中的每个地点进行垂直剖面飞行。完成所有剖面图需要 6 个飞行日。

机载原位仪器 

InstrumentMeasurement frequencyMeasurement
Picarro G2401 2.4 secondsCH4, CO, CO2, and water vapor (H20), Air pressure (P)
Vaisala 1 HzRelative humidity (RH), air temperature (T)
Aspen 1 HzEastward wind (u) and northward wind (v) speeds

 

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="ABoVE_Arctic_CAP_1658",
    cloud_hosted=True,
    bounding_box=(-166.04, 40.04, -104.11, 71.29),
    temporal=("2017-04-26", "2017-11-05"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

数据连接

ABoVE: Atmospheric Profiles of CO, CO2 and CH4 Concentrations from Arctic-CAP, 2017

引用

Sweeney, C., and K. McKain. 2019. ABoVE: Atmospheric Profiles of CO, CO2 and CH4 Concentrations from Arctic-CAP, 2017. ORNL DAAC, Oak Ridge, Tennessee, USA. ABoVE: Atmospheric Profiles of CO, CO2 and CH4 Concentrations from Arctic-CAP, 2017, https://doi.org/10.3334/ORNLDAAC/1658

网址推荐

 0代码在线构建地图应用

Mapmost loginicon-default.png?t=N7T8https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

前言 – 人工智能教程icon-default.png?t=N7T8https://www.cbedai.net/xg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1535695.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MIT的研究人员最近开发了一种名为“FeatUp”的新算法,这一突破性技术为计算机视觉领域带来了高分辨率的洞察力

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

【冥想X理工科思维】场景10:长期项目的焦虑和压力

冥想音频合集:职场解压冥想音频 压力场景: 在长期项目中,如何定期冥想帮我保持耐心和持久性? 点击看大图: 详细说明:通过这个冥想流程,你可以帮助自己在长期项目中保持耐心、坚持和放松的状态。…

SAP前台处理:物料主数据创建<MM01>之会计视图

一、背景: 终于来到了物料主数据,我觉得物料账是SAP最重要的一项发明,也一直是SAP的一项重要优势,物料账记录了一个个物料的生生不息; 本章主要讲解物料主数据和财务相关的主要内容:这里特别提示由于作者…

类和对象-4

文章目录 前言const成员函数取地址及const取地址操作符重载构造函数续explicit static成员友元内部类匿名对象 前言 在前面的文章中,我们了解到了类的四个默认成员函数:构造、析构、拷贝构造和赋值重载。接下来我们会继续学习剩下的两个默认成员函数以及…

CAD建筑版2024 安装教程

CAD建筑版是一种专门用于建筑设计和绘图的CAD软件版本。它提供了专业的建筑设计工具和功能,帮助建筑师、设计师和工程师在建筑领域进行快速、准确和高效的设计工作。 CAD建筑版具备建筑相关的库和元素,用户可以方便地使用预定义的建筑符号和元素进行建筑…

二叉树|104.二叉树的最大深度 111.二叉树的最小深度

104.二叉树的最大深度 力扣题目链接 class solution { public:int getdepth(TreeNode* node) {if (node NULL) return 0;int leftdepth getdepth(node->left); // 左int rightdepth getdepth(node->right); // 右int depth 1 max(leftdepth, rightdepth…

嵌入式-4种经典继电器驱动电路-单片机IO端口/三极管/达林顿管/嵌套连接

文章目录 一:继电器原理二:单片机驱动电路三:经典继电器驱动电路方案3.1 继电器驱动电路方案一:I/O端口灌电流方式的直接连接3.1.1 方案一的继电器特性要求3.1.2 方案一可能会损坏I/O口 3.2 继电器驱动电路方案二:三极…

记录一次基于AES加密的恶意软件逆向分析和解密过程(含文件)

导入(Imports)和字符串 首先,用IDA或Ghidra加载文件test.dat,文件为64位文件 IDA点击View==>Open subviews==>Imports,查看导入信息 Ghidra可以直接看到 可以看到,导入函数有: __printf_chk, malloc, __isoc99_sscanf, putchar, __stack_chk_fail, __cxa_fina…

安捷伦Agilent E8361C网络分析仪

181/2461/8938产品概述: 安捷伦e 8361 c网络分析仪提供通用网络分析,可选软件和/或硬件为您的应用定制-如多端口、脉冲射频等。 安捷伦E8361C网络分析仪的显示窗口数量不限,可以调整大小和重新排列,每个窗口最多有24条活动轨迹和…

CSS 脱离标准文档流 浮动

浮动 在标准流当中,元素或者标签在页面上摆放的时候会出现不如意的地方。要想解决这些问题可以采用脱离标准流的方式来进行解决这些问题,脱离标准流也称为脱离文档流。 脱离标准流的解决方式有三种,一种是浮动,另外一种是固定定位…

【Flask】Flask项目结构初识

1.前提准备 Python版本 # python 3.8.0 # 查看Python版本 python --version 安装第三方 Flask pip install flask # 如果安装失败,可以使用 -i,指定使用国内镜像源 # 清华镜像源:https://pypi.tuna.tsinghua.edu.cn/simple/ 检查 Flask 是…

大数据分析-基于Python的电影票房信息数据的爬取及分析

概要 现如今,人民群众对物质生活水平的要求已不再局限于衣食住行,对于精神文化有了更多的需求。电影在我国越来越受欢迎,电影业的发展越来越迅猛,为了充分利用互联网技术的发展,掌握电影业的态势,对信息进行…

【3GPP】【核心网】【4G】4G手机接入过程,手机附着过程(超详细)

1. 4G手机接入过程,手机附着过程 附着(Attach): 终端在PLMN中注册,从而建立自己的档案,即终端上下文 进行附着的三种情况: ①终端开机后的附着,初始附着 ②终端从覆盖盲区返回到…

全栈的自我修养 ———— uniapp中加密方法

直接按部就班一步一步来 一、首先创建一个js文件填入AES二、创建加密解密方法三、测试 一、首先创建一个js文件填入AES 直接复制以下内容 /* CryptoJS v3.1.2 code.google.com/p/crypto-js (c) 2009-2013 by Jeff Mott. All rights reserved. code.google.com/p/crypto-js/wi…

(ROOT)KAFKA详解

生产篇 使用 /** Licensed to the Apache Software Foundation (ASF) under one or more* contributor license agreements. See the NOTICE file distributed with* this work for additional information regarding copyright ownership.* The ASF licenses this file to Y…

使用Windows的“远程桌面连接”Ubuntu主机连接不上问题解决

问题描述: 使用Windows自带的“远程桌面连接”来连接自己的Ubuntu的系统的过程中,自己已经成功安装了 xrdp 文件包,但是在使用“远程桌面连接”时,自己的“远程桌面连接”软件在输入Ubuntu系统的用户名和密码后,连接不…

LRU的设计与实现-算法通关村

LRU的设计与实现-算法通关村 缓存是应用软件的必备功能之一,在操作系统,Java里的Spring、mybatis、redis、mysql等软件中都有自己的内部缓存模块,而缓存是如何实现的呢?在操作系统教科书里我们知道常用的有FIFO、LRU和LFU三种基本…

Java-SSM房租租赁系统

Java-SSM房租租赁系统 1.服务承诺: 包安装运行,如有需要欢迎联系(VX:yuanchengruanjian)。 2.项目所用框架: 前端:JSP、jquery、bootstrap等。 后端:SSM,即Spring、SpringMvc、Mybatis等。 3.项目功能点: 3-1.后端房东功能: 1.…

linux学习之Socket

目录 编写socket-udp 第一步,编写套接字 第二步,绑定端口号 第三步,启动服务器,读取数据 第四步,接收消息并发回信息给对方 编写socket-Tcp 第一步,编写套接字 第二步,绑定端口号 第三步…

解读BGInfo配置命令

命令行中的第一条命令是用于修改Windows注册表的,具体解释如下: reg add HKEY_CURRENT_USER\Software\Sysinternals\BGInfo /v EulaAccepted /t REG_DWORD /d 1 /f reg add:这是一个用来向Windows注册表添加或修改键值的命令行指令。HKEY_C…