刷题DAY30 | LeetCode 332-重新安排行程 51-N皇后 37-解数独

news2025/1/8 4:41:06

332 重新安排行程(hard)

给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。

所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。

例如,行程 [“JFK”, “LGA”] 与 [“JFK”, “LGB”] 相比就更小,排序更靠前。
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。

思路:

这道题目有几个难点:

  • 一个行程中,如果航班处理不好容易变成一个圈,成为死循环
  • 有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?
  • 使用回溯法(也可以说深搜) 的话,那么终止条件是什么呢?
  • 搜索的过程中,如何遍历一个机场所对应的所有机场。

1. 如何理解死循环
对于死循环,我来举一个有重复机场的例子:
在这里插入图片描述
为什么要举这个例子呢,就是告诉大家,出发机场和到达机场也会重复的,如果在解题的过程中没有对集合元素处理好,就会死循环。

2. 记录映射关系

有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?

一个机场映射多个机场,机场之间要靠字母序排列,一个机场映射多个机场,可以使用std::unordered_map,如果让多个机场之间再有顺序的话,就是用std::map或者std::multimap或者 std::multiset。

这样存放映射关系可以定义为 unordered_map<string, multiset> targets 或者 unordered_map<string, map<string, int>> targets。

含义如下:

unordered_map<string, multiset> targets:unordered_map<出发机场, 到达机场的集合> targets

unordered_map<string, map<string, int>> targets:unordered_map<出发机场, map<到达机场, 航班次数>> targets

这两个结构,我选择了后者,因为如果使用unordered_map<string, multiset<string>> targets 遍历multiset的时候,不能删除元素,一旦删除元素,迭代器就失效了

再说一下为什么一定要增删元素呢,正如开篇我给出的图中所示,出发机场和到达机场是会重复的,搜索的过程没及时删除目的机场就会死循环。

所以搜索的过程中就是要不断的删multiset里的元素,那么推荐使用unordered_map<string, map<string, int>> targets。

在遍历 unordered_map<出发机场, map<到达机场, 航班次数>> targets的过程中,可以使用"航班次数"这个字段的数字做相应的增减,来标记到达机场是否使用过了。

如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了,而不用对集合做删除元素或者增加元素的操作。

相当于说我不删,我就做一个标记!

3. 回溯法

这道题目我使用回溯法,那么下面按照我总结的回溯模板来:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

本题以输入:[[“JFK”, “KUL”], [“JFK”, “NRT”], [“NRT”, “JFK”]为例,抽象为树形结构如下:
在这里插入图片描述
开始回溯三部曲:

  • 递归函数参数

在讲解映射关系的时候,已经讲过了,使用unordered_map<string, map<string, int>> targets; 来记录航班的映射关系,我定义为全局变量。

当然把参数放进函数里传进去也是可以的,我是尽量控制函数里参数的长度。

参数里还需要ticketNum,表示有多少个航班(终止条件会用上)。

代码如下:

// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {

注意函数返回值用的是bool!

一般函数返回值都是void,这次为什么是bool呢?

因为我们只需要找到一个行程,就是在树形结构中唯一的一条通向叶子节点的路线,所以找到了这个叶子节点了直接返回

当然本题的targets和result都需要初始化,代码如下:

for (const vector<string>& vec : tickets) {
    targets[vec[0]][vec[1]]++; // 记录映射关系
}
result.push_back("JFK"); // 起始机场
  • 递归终止条件

拿题目中的示例为例,输入: [[“MUC”, “LHR”], [“JFK”, “MUC”], [“SFO”, “SJC”], [“LHR”, “SFO”]] ,这是有4个航班,那么只要找出一种行程,行程里的机场个数是5就可以了。

所以终止条件是:我们回溯遍历的过程中,遇到的机场个数,如果达到了(航班数量+1),那么我们就找到了一个行程,把所有航班串在一起了。

代码如下:

if (result.size() == ticketNum + 1) {
    return true;
}
  • 单层搜索的逻辑

回溯的过程中,如何遍历一个机场所对应的所有机场呢?

这里刚刚说过,在选择映射函数的时候,不能选择unordered_map<string, multiset> targets, 因为一旦有元素增删multiset的迭代器就会失效,当然可能有牛逼的容器删除元素迭代器不会失效,这里就不在讨论了。

可以说本题既要找到一个对数据进行排序的容器,而且还要容易增删元素,迭代器还不能失效。

所以选择unordered_map<string, map<string, int>> targets 来做机场之间的映射。

遍历过程如下:

for (pair<const string, int>& target : targets[result[result.size() - 1]]) {
    if (target.second > 0 ) { // 记录到达机场是否飞过了
        result.push_back(target.first);
        target.second--;
        if (backtracking(ticketNum, result)) return true;
        result.pop_back();
        target.second++;
    }
}

可以看出 通过unordered_map<string, map<string, int>> targets里的int字段来判断 这个集合里的机场是否使用过,这样避免了直接去删元素。

代码实现:

class Solution {
private:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {
    if (result.size() == ticketNum + 1) {
        return true;
    }
    for (pair<const string, int>& target : targets[result[result.size() - 1]]) {
        if (target.second > 0 ) { // 记录到达机场是否飞过了
            result.push_back(target.first);
            target.second--;
            if (backtracking(ticketNum, result)) return true;
            result.pop_back();
            target.second++;
        }
    }
    return false;
}
public:
    vector<string> findItinerary(vector<vector<string>>& tickets) {
        targets.clear();
        vector<string> result;
        for (const vector<string>& vec : tickets) {
            targets[vec[0]][vec[1]]++; // 记录映射关系
        }
        result.push_back("JFK"); // 起始机场
        backtracking(tickets.size(), result);
        return result;
    }
};

注意:

for (pair<const string, int>& target : targets[result[result.size() - 1]])

一定要加上引用即 & target,因为后面有对 target.second 做减减操作,如果没有引用,单纯复制,这个结果就没记录下来,那最后的结果就不对了。

加上引用之后,就必须在 string 前面加上 const,因为map中的key 是不可修改了,这就是语法规定了

详细解析:
代码实现文章


51 N皇后(hard)

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。

思路:标准回溯法,再加一个isValid函数判断当前棋子是否可以放即可

首先来看一下皇后们的约束条件:

  • 不能同行
  • 不能同列
  • 不能同斜线

确定完约束条件,来看看究竟要怎么去搜索皇后们的位置,其实搜索皇后的位置,可以抽象为一棵树。

下面用一个 3 * 3 的棋盘,将搜索过程抽象为一棵树,如图:
在这里插入图片描述

从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。

那么我们用皇后们的约束条件,来回溯搜索这棵树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了。

回溯三部曲:

  • 递归函数参数

依然是定义全局变量二维数组result来记录最终结果。

参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了。

代码如下:

vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
  • 递归终止条件

可以看出,当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。

代码如下:

if (row == n) {
    result.push_back(chessboard);
    return;
}
  • 单层搜索的逻辑

递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。

每次都是要从新的一行的起始位置开始搜,所以都是从0开始。

代码如下:

for (int col = 0; col < n; col++) {
    if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
        chessboard[row][col] = 'Q'; // 放置皇后
        backtracking(n, row + 1, chessboard);
        chessboard[row][col] = '.'; // 回溯,撤销皇后
    }
}

验证棋盘是否合法
按照如下标准去重:

  • 不能同行
  • 不能同列
  • 不能同斜线 (45度和135度角)
    代码如下:
bool isValid(int row, int col, vector<string>& chessboard, int n) {
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}

为什么没有在同行进行检查呢?

  • 因为在单层搜索的过程中,每一层递归,只会选for循环(也就是同一行)里的一个元素,所以不用去重了。

代码实现:

class Solution {
private:
vector<vector<string>> result;
// n 为输入的棋盘大小
// row 是当前递归到棋盘的第几行了
void backtracking(int n, int row, vector<string>& chessboard) {
    if (row == n) {
        result.push_back(chessboard);
        return;
    }
    for (int col = 0; col < n; col++) {
        if (isValid(row, col, chessboard, n)) { // 验证合法就可以放
            chessboard[row][col] = 'Q'; // 放置皇后
            backtracking(n, row + 1, chessboard);
            chessboard[row][col] = '.'; // 回溯,撤销皇后
        }
    }
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {
    // 检查列
    for (int i = 0; i < row; i++) { // 这是一个剪枝
        if (chessboard[i][col] == 'Q') {
            return false;
        }
    }
    // 检查 45度角是否有皇后
    for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    // 检查 135度角是否有皇后
    for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
        if (chessboard[i][j] == 'Q') {
            return false;
        }
    }
    return true;
}
public:
    vector<vector<string>> solveNQueens(int n) {
        result.clear();
        std::vector<std::string> chessboard(n, std::string(n, '.'));
        backtracking(n, 0, chessboard);
        return result;
    }
};

详细解析:
思路视频
代码实现文章


37 解数独(hard)

编写一个程序,通过填充空格来解决数独问题。

数独的解法需 遵循如下规则:

数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 ‘.’ 表示。

思路:回溯法+二维递归

棋盘搜索问题可以使用回溯法暴力搜索,只不过这次我们要做的是二维递归。

怎么做二维递归呢?

N皇后问题是因为每一行每一列只放一个皇后,只需要一层for循环遍历一行,递归来遍历列,然后一行一列确定皇后的唯一位置。

本题就不一样了,本题中棋盘的每一个位置都要放一个数字(而N皇后是一行只放一个皇后),并检查数字是否合法,解数独的树形结构要比N皇后更宽更深。

因为这个树形结构太大了,抽取一部分,如图所示:

在这里插入图片描述
回溯三部曲

  • 递归函数以及参数

递归函数的返回值需要是bool类型,为什么呢?因为解数独找到一个符合的条件(就在树的叶子节点上)立刻就返回,相当于找从根节点到叶子节点一条唯一路径,所以需要使用bool返回值。

代码如下:

bool backtracking(vector<vector<char>>& board)
  • 递归终止条件

本题递归不用终止条件,解数独是要遍历整个树形结构寻找可能的叶子节点就立刻返回。

不用终止条件会不会死循环?

递归的下一层的棋盘一定比上一层的棋盘多一个数,等数填满了棋盘自然就终止(填满当然好了,说明找到结果了),所以不需要终止条件!

  • 递归单层搜索逻辑

在树形图中可以看出我们需要的是一个二维的递归(也就是两个for循环嵌套着递归)

一个for循环遍历棋盘的行,一个for循环遍历棋盘的列,一行一列确定下来之后,递归遍历这个位置放9个数字的可能性!

代码如下:(详细看注释)

bool backtracking(vector<vector<char>>& board) {
    for (int i = 0; i < board.size(); i++) {        // 遍历行
        for (int j = 0; j < board[0].size(); j++) { // 遍历列
            if (board[i][j] != '.') continue;
            for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适
                if (isValid(i, j, k, board)) {
                    board[i][j] = k;                // 放置k
                    if (backtracking(board)) return true; // 如果找到合适一组立刻返回
                    board[i][j] = '.';              // 回溯,撤销k
                }
            }
            return false;                           // 9个数都试完了,都不行,那么就返回false
        }
    }
    return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}

注意这里return false的地方,这里放return false 是有讲究的。

因为如果一行一列确定下来了,这里尝试了9个数都不行,说明这个棋盘找不到解决数独问题的解!

那么会直接返回, 这也就是为什么没有终止条件也不会永远填不满棋盘而无限递归下去!

判断棋盘是否合法

判断棋盘是否合法有如下三个维度:

  • 同行是否重复
  • 同列是否重复
  • 9宫格里是否重复
    代码如下:
bool isValid(int row, int col, char val, vector<vector<char>>& board) {
    for (int i = 0; i < 9; i++) { // 判断行里是否重复
        if (board[row][i] == val) {
            return false;
        }
    }
    for (int j = 0; j < 9; j++) { // 判断列里是否重复
        if (board[j][col] == val) {
            return false;
        }
    }
    int startRow = (row / 3) * 3;
    int startCol = (col / 3) * 3;
    for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
        for (int j = startCol; j < startCol + 3; j++) {
            if (board[i][j] == val ) {
                return false;
            }
        }
    }
    return true;
}

代码实现:

class Solution {
private:
bool backtracking(vector<vector<char>>& board) {
    for (int i = 0; i < board.size(); i++) {        // 遍历行
        for (int j = 0; j < board[0].size(); j++) { // 遍历列
            if (board[i][j] == '.') {
                for (char k = '1'; k <= '9'; k++) {     // (i, j) 这个位置放k是否合适
                    if (isValid(i, j, k, board)) {
                        board[i][j] = k;                // 放置k
                        if (backtracking(board)) return true; // 如果找到合适一组立刻返回
                        board[i][j] = '.';              // 回溯,撤销k
                    }
                }
                return false;  // 9个数都试完了,都不行,那么就返回false
            }
        }
    }
    return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool isValid(int row, int col, char val, vector<vector<char>>& board) {
    for (int i = 0; i < 9; i++) { // 判断行里是否重复
        if (board[row][i] == val) {
            return false;
        }
    }
    for (int j = 0; j < 9; j++) { // 判断列里是否重复
        if (board[j][col] == val) {
            return false;
        }
    }
    int startRow = (row / 3) * 3;
    int startCol = (col / 3) * 3;
    for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
        for (int j = startCol; j < startCol + 3; j++) {
            if (board[i][j] == val ) {
                return false;
            }
        }
    }
    return true;
}
public:
    void solveSudoku(vector<vector<char>>& board) {
        backtracking(board);
    }
};

详细解析:
思路视频
代码实现文章

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1535632.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue中的状态管理Vuex,基本使用

1.什么是Vuex? Vuex是专门为Vue.js设计的状态管理模式;特点:集中式存储和管理应用程序中所有组件状态,保证状态以一种可预测的方式发生变化。 1.1.什么是状态管理模式? 先看一个单向数据流的简单示意图 state:驱动应用的数据源 view:以声明方式将state映射到视图 actions:…

运动想象 (MI) 分类学习系列 (2) : EEG-FMCNN

运动想象分类学习系列:EEG-FMCNN 0. 引言1. 主要贡献2. 提出的网络结构2.1 SE模块2.2 多分支一维卷积神经网络 3. 实验结果3.1 消融实验结果3.2 与基线模型比较 4. 总结欢迎来稿 论文地址&#xff1a;https://link.springer.com/article/10.1007/s11517-023-02931-x 论文题目&a…

ES 8.x的多实例集群搭建与角色规划

ES 8 多实例集群搭建与角色规划 ES 8版本与之前版本存在较大改变&#xff0c;第一个区别就是启动时默认开启了安全模式&#xff0c;也就是即便是测试环境也需要用户名密码和https传输层安全证书。此外&#xff0c;集群节点的角色也与之前不同&#xff0c;除了新增角色外在配置…

MySQL学习笔记(一)

1、什么是数据库&#xff1f;什么是数据库管理系统&#xff1f;什么是SQL&#xff1f;他们之间的关系是什么&#xff1f; 数据库&#xff1a;英文单词DataBase&#xff0c;简称DB。按照一定格式存储数据的一些文件的组合。顾名思义&#xff0c;存储数据的仓库&#xff0c;实际…

安卓实现翻转时间显示效果

效果 废话不多说上代码 自定义组件 import android.content.Context; import android.content.res.TypedArray; import android.graphics.Camera; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Matrix; import android.graphics.…

学点儿Java_Day8_接口、final、static

1 接口interface 1.1 概念 接口是一个纯粹的抽象类&#xff08;接口里面所有的方法都是抽象方法&#xff09; 接口就是一个规范(标准)&#xff0c;他没有提供任何是实现&#xff0c;具体的功能由实现接口的子类去实现。 接口就是一个规范&#xff0c;可插拔&#xff08;可以被…

3/21 work

自由发挥登录窗口的应用场景&#xff0c;实现一个登录窗口界面。&#xff08;不要使用课堂上的图片和代码&#xff0c;自己发挥&#xff0c;有利于后面项目的完成&#xff09; 要求&#xff1a; 1. 需要使用Ui界面文件进行界面设计 2. ui界面上的组件相关设置&#xff0c;通…

深度学习项目-基于深度学习的股票价格预测研究

概要 随着经济的发展&#xff0c;中国股票市场的规模持续扩大&#xff0c;早已成为金融投资的重要部分&#xff0c;掌握股票市场的变化规律无论是对监管者还是投资者都具有极其重要的意义。正因如此&#xff0c;人们不断探索着股票市场的变化规律&#xff0c;其中使用深度学习预…

【C++】1416. 求长方形的周长和面积

问题&#xff1a;1416. 求长方形的周长和面积 类型&#xff1a; 基本运算、整数运算 题目描述&#xff1a; 从键盘读入2个整数&#xff0c;分别代表一个长方形的长和宽&#xff0c;请计算长方形的周长和面积&#xff1b; 输入&#xff1a; 从键盘读入2个整数&#xff0c;用…

【网站项目】291校园疫情防控系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

windows下使用压缩包安装mysql8.0数据库

获取安装包 可以访问mysql 官网下载压缩安装包 &#xff08;官网地址&#xff1a;https://downloads.mysql.com/archives/community/&#xff09; 根据自己的需要&#xff0c;下载对应mysql版本&#xff0c;我选择是是8.0.16版本 安装 解压之后&#xff0c;可以看到压缩包…

德勤:《亚太地区半导体行业展望》

2024年2月22日&#xff0c;德勤联合全球半导体联盟&#xff08;GSA&#xff09;对亚洲半导体产业链相关企业展开调研&#xff0c;邀请数位亚太地区主要半导体企业领导人&#xff0c;共同探讨半导体企业在当前环境下应如何通过数字技术曲线的领先优势保持业务竞争力和盈利能力&a…

GESP图形化编程二级认证真题 2024年3月

GESP 图形化二级试卷 &#xff08;满分&#xff1a;100 分 考试时间&#xff1a;120 分钟&#xff09; 一、单选题&#xff08;共 10 题&#xff0c;每题 3 分&#xff0c;共 30 分&#xff09; 1、小杨的父母最近刚刚给他买了一块华为手表&#xff0c;他说手表上跑的是鸿…

(day 15)JavaScript学习笔记(对象3)

概述 这是我的学习笔记&#xff0c;记录了JavaScript的学习过程。在写博客的时候我会尽量详尽的记录每个知识点。如果你完全没接触过JavaScript&#xff0c;那么这一系列的学习笔记可能会对你有所帮助。 今天继续学习对象&#xff0c;主要是Object.create()、原型链、修改原型指…

Autosar的前世今生:E2E通信校验

在浏览项目整体框架的时候&#xff0c;发现E2E是一个不可绕开的点&#xff0c;而且处处可见Autosar框架的踪迹&#xff0c;因此开一个专栏&#xff0c;每天学习一点相关知识点 E2E&#xff08;end to end&#xff09;是Autosar规范里规定的一种用于保证数据传输正确的概念&…

超越 GPT-4V 和 Gemini Pro!HyperGAI 发布最新多模态大模型 HPT,已开源

随着AI从有限数据迈向真实世界&#xff0c;极速增长的数据规模不仅赋予了模型令人惊喜的能力&#xff0c;也给多模态模型提供了更多的可能性。OpenAI在发布GPT-4V时就已经明确表示&#xff1a; 将额外模态&#xff08;如图像输入&#xff09;融入大语言模型&#xff08;LLMs&am…

CTK插件框架学习-源码下载编译(01)

1、编译环境 window11、vs17、Qt5.14.0、cmake3.27.4 2、下载链接 cmake&#xff1a;Index of /files/v3.20 qt&#xff1a;Index of / vs22以前的版本需要登录下载&#xff1a;Visual Studio 较旧的下载 - 2019、2017、2015 和以前的版本 vs22下载&#xff1a;下载 Visu…

力扣热门算法题 62. 不同路径,66. 加一,67. 二进制求和

62. 不同路径&#xff0c;66. 加一&#xff0c;67. 二进制求和&#xff0c;每题做详细思路梳理&#xff0c;配套Python&Java双语代码&#xff0c; 2024.03.21 可通过leetcode所有测试用例。 目录 62. 不同路径 解题思路 完整代码 Python Java 66. 加一 解题思路 …

专业矢量绘图设计软件:Sketch for mac 中文激活版

Sketch for Mac 是一款专业的矢量图形设计工具&#xff0c;主要用于 UI/UX 设计、网页设计、图标设计等领域。它的界面简洁、易用&#xff0c;功能强大&#xff0c;可以帮助设计师快速创建高质量的设计作品。 人性化界面 Sketch的界面非常简洁。最顶端的工具箱包含了最重要的操…

【MySQL】3.1MySQL索引的介绍

目录 一、索引的概念 数据库索引 索引的作用 索引的副作用 索引创建的原则&#xff08;应用场景&#xff09; 适合建立索引 二、索引的分类和创建 1.普通索引 创建普通索引 1.1直接创建 1.2修改表结构的方式创建普通索引 1.3创建表时创建普通索引 2.唯一索引 2.1…