【网络原理】详解HTTPS协议加密过程

news2024/9/23 13:24:36

文章目录

  • 🌴HTTPS协议是什么?
  • 🎄运营商劫持事件
  • 🌲HTTPS的工作过程
    • 🌸对称加密
    • 🌸非对称加密
    • 🌸引入证书
    • 🌸完整流程
  • 🌳HTTPS加密总结
  • ⭕总结

🌴HTTPS协议是什么?

HTTPS 也是一个应用层协议. 是在 HTTP 协议的基础上引入了一个加密层.

HTTP 协议内容都是按照文本的方式明文传输的. 这就导致在传输过程中出现一些被篡改的情况,比如臭名昭著的“运营商劫持事件”

🎄运营商劫持事件

比如我们这里下载一个 天天动听

以下是未被劫持的效果, 点击下载按钮, 就会弹出天天动听的下载链接.
在这里插入图片描述
已被劫持的效果, 点击下载按钮, 就会弹出 QQ 浏览器的下载链接
在这里插入图片描述
由于我们通过⽹络传输的任何的数据包都会经过运营商的⽹络设备(路由器, 交换机等), 那么运营商的⽹
络设备就可以解析出你传输的数据内容, 并进⾏篡改.
点击 “下载按钮”, 其实就是在给服务器发送了⼀个 HTTP 请求, 获取到的 HTTP 响应其实就包含了该
APP 的下载链接. 运营商劫持之后, 就发现这个请求是要下载天天动听, 那么就⾃动的把交给⽤⼾的响应
给篡改成 “QQ浏览器” 的下载地址了.
在这里插入图片描述
思考下, 为啥运营商要进⾏劫持?

不⽌运营商可以劫持, 其他的 ⿊客 也可以⽤类似的⼿段进⾏劫持, 来窃取⽤⼾隐私信息, 或者篡改内容.

在互联⽹上, 明⽂传输是⽐较危险的事情!!!
HTTPS 就是在 HTTP 的基础上进⾏了加密, 进⼀步的来保证⽤⼾的信息安全

🌲HTTPS的工作过程

既然要保证数据安全, 就需要进行 “加密”.

网络传输中不再直接传输明文了, 而是加密之后的 “密文”.

加密的方式有很多, 但是整体可以分成两大类: 对称加密非对称加密

🌸对称加密

对称加密其实就是通过同一个 “密钥” , 把明文加密成密文, 并且也能把密文解密成明文

一个简单加密示例如下:

⼀个简单的对称加密, 按位异或
假设 明⽂ a = 1234, 密钥 key = 8888
则加密 a ^ key 得到的密⽂ b 为 9834.
然后针对密⽂ 9834 再次进⾏运算 b ^ key, 得到的就是原来的明⽂ 1234.
(对于字符串的对称加密也是同理, 每⼀个字符都可以表⽰成⼀个数字)
当然, 按位异或只是最简单的对称加密. HTTPS 中并不是使⽤按位异或.

当然, 按位异或只是最简单的对称加密. HTTPS 中并不是使用按位异或.

具体如何使用我们这里不做深究,这里重点在于理解原理

引入加密后,引入对称加密之后, 即使数据被截获, 由于黑客不知道密钥是啥, 因此就无法进行解密, 也就不知道请求的真实内容是啥了.

在这里插入图片描述
但事情没这么简单. 服务器同一时刻其实是给很多客户端提供服务的. 这么多客户端, 每个人用的秘钥都必须是不同的(如果是相同那密钥就太容易扩散了, 黑客就也能拿到了). 因此服务器就需要维护每个客户端和每个密钥之间的关联关系, 这也是个很麻烦的事情~
在这里插入图片描述
⽐较理想的做法, 就是能在客⼾端和服务器建⽴连接的时候, 双⽅协商确定这次的密钥是啥~
在这里插入图片描述

但是如果直接把密钥明⽂传输, 那么⿊客也就能获得密钥了~~ 此时后续的加密操作就形同虚设了.
**因此密钥的传输也必须加密传输! **
但是要想对密钥进⾏对称加密, 就仍然需要先协商确定⼀个 “密钥的密钥”. 这就成了 “先有鸡还是先有
蛋” 的问题了. 此时密钥的传输再⽤对称加密就⾏不通了.
就需要引⼊非对称加密.

🌸非对称加密

非对称加密要用到两个密钥, 一个叫做 “公钥”, 一个叫做 “私钥”.

公钥和私钥是配对的. 最大的缺点就是运算速度非常慢,比对称加密要慢很多.

  • 通过公钥对明文加密, 变成密文
  • 通过私钥对密文解密, 变成明文

也可以反着用

  • 通过私钥对明文加密, 变成密文
  • 通过公钥对密文解密, 变成明文

这里的加密过程就相当于

我有一把钥匙(私钥)和一把(锁),我把锁给你,你把想要给我的数据放在一个盒子里面,并用这把锁锁上,这时候这个箱子只有我手上的钥匙可以打开

公钥每个人都知道,是公共的,私钥只有服务器知道

大致过程如下:在这里插入图片描述

• 客⼾端在本地⽣成对称密钥, 通过公钥加密, 发送给服务器.
• 由于中间的⽹络设备没有私钥, 即使截获了数据, 也⽆法还原出内部的原⽂, 也就⽆法获取到对称密

• 服务器通过私钥解密, 还原出客⼾端发送的对称密钥. 并且使⽤这个对称密钥加密给客⼾端返回的响
应数据.
• 后续客⼾端和服务器的通信都只⽤对称加密即可. 由于该密钥只有客⼾端和服务器两个主机知道, 其
他主机/设备不知道密钥即使截获数据也没有意义

由于对称加密的效率⽐⾮对称加密⾼很多, 因此只是在开始阶段协商密钥的时候使⽤⾮对称加密, 后续
的传输仍然使⽤对称加密.

那么接下来问题⼜来了:
• 客⼾端如何获取到公钥?
• 客⼾端如何确定这个公钥不是⿊客伪造的?

理解中间人攻击

在这里插入图片描述

我有一把钥匙(私钥)和一把(锁),我需要不把锁给你,但是此时我可能不太方便,就让张三转交给你
这时候张三动了歪脑筋,他自己准备一把新的钥匙(黑客自己的私钥)和一把新的锁(黑客自己的公钥)。
然后他把自己准备的锁交给你,这时候你将东西放入盒子加上锁后交给张三
这时候张三就可以拿自己准备钥匙打开锁,把里面的东西进行修改后,再用我准备交给你的锁锁上后,再教给我
这样一来,我们两个双方都以为天衣无缝,结果早就已经被张三掌控

🌸引入证书

在客户端和服务器刚一建立连接的时候, 服务器给客户端返回一个 证书.

这个证书包含了刚才的公钥, 也包含了网站的身份信息.

这个证书就好比人的身份证, 作为这个网站的身份标识. 搭建一个 HTTPS 网站要在CA机构先申请一个证书. (类似于去公安局办个身份证)

在这里插入图片描述

这个 证书 可以理解成是一个结构化的字符串, 里面包含了以下信息:

  • 证书发布机构
  • 证书有效期
  • 公钥
  • 证书所有者
  • 签名

当客户端获取到这个证书之后, 会对证书进行校验(防止证书是伪造的).

  • 判定证书的有效期是否过期
  • 判定证书的发布机构是否受信任(操作系统中已内置的受信任的证书发布机构).
  • 验证证书是否被篡改: 从系统中拿到该证书发布机构的公钥, 对签名解密, 得到一个 hash 值(称为数据摘要), 设为 hash1. 然后计算整个证书的 hash 值, 设为 hash2. 对比 hash1 和 hash2 是否相等.如果相等, 则说明证书是没有被篡改过的

那么问题来了,这个证书黑客是否可以伪造呢?

首先我们需要理解数据摘要 / 签名

针对一段数据(比如一个字符串), 也可以通过一些特定的算法, 对这个字符串生成一个 “签名”. 并保证不同的数据, 生成的 “签名” 差别很大. 这样使用这样的签名就可以一定程度的区分不同的数据.

常见的生成签名的算法有: MD5 和 SHA 系列

以 MD5 为例, 我们不需要研究具体的计算签名的过程, 只需要了解 MD5 的特点:

  • 定长: 无论多长的字符串, 计算出来的 MD5 值都是固定长度 (16字节版本或者32字节版本)

  • 分散: 源字符串只要改变一点点, 最终得到的 MD5 值都会差别很大.

  • 不可逆: 通过源字符串生成 MD5 很容易, 但是通过 MD5 还原成原串理论上是不可能的.

正因为 MD5 有这样的特性, 我们可以认为如果两个字符串的 MD5 值相同, 则认为这两个字符串相同

接下来我们就可以理解判定证书篡改的过程: (这个过程就好比判定这个身份证是不是伪造的身份证)

  • 假设我们的证书只是一个简单的字符串 hello, 对这个字符串计算hash值(比如md5), 结果为BC4B2A76B9719D91

  • 如果 hello 中有任意的字符被篡改了, 比如变成了 hella, 那么计算的 md5 值就会变化很大.BDBD6F9CF51F2FD8

  • 然后我们可以把这个字符串 hello 和 哈希值 BC4B2A76B9719D91 从服务器返回给客户端, 此时

  • 客户端如何验证 hello 是否是被篡改过?

  • 那么就只要计算 hello 的哈希值, 看看是不是 BC4B2A76B9719D91 即可

在这里插入图片描述
但是还有个问题, 如果黑客把 hello 篡改了, 同时也把哈希值重新计算下, 客户端就分辨不出来了呀
在这里插入图片描述
这个哈希值在服务器端通过另外一个私钥加密(这个私钥是申请证书的时候, 证书发布机构给服务器的, 不是客户端和服务器传输对称密钥的私钥).

然后客户端通过操作系统里已经存的了的证书发布机构的公钥进行解密, 还原出原始的哈希值, 再进行校验.

在这里插入图片描述
就相当于,黑客劫持了进行解密之后,进行篡改了,没有服务器的私钥进行加密,当他把这个数据传输给客户端时,客户端解密后,就会发现内容被人篡改了。

🌸完整流程

在这里插入图片描述

🌳HTTPS加密总结

HTTPS 工作过程中涉及到的密钥有三组

  • 第一组(非对称加密): 用于校验证书是否被篡改. 服务器持有私钥(私钥在注册证书时获得), 客户端持有公钥(操作系统包含了可信任的 CA 认证机构有哪些, 同时持有对应的公钥). 服务器使用这个私钥对证书的签名进行加密. 客户端通过这个公钥解密获取到证书的签名, 从而校验证书内容是否是篡改过.

  • 第二组(非对称加密): 用于协商生成对称加密的密钥. 服务器生成这组 私钥-公钥 对, 然后通过证书把公钥传递给客户端. 然后客户端用这个公钥给生成的对称加密的密钥加密, 传输给服务器, 服务器通过私钥解密获取到对称加密密钥.

  • 第三组(对称加密): 客户端和服务器后续传输的数据都通过这个对称密钥加密解密

其实一切的关键都是围绕这个对称加密的密钥. 其他的机制都是辅助这个密钥工作的.

  • 第一组非对称加密的密钥是为了让客户端拿到第二组非对称加密的公钥

  • 第二组非对称加密的密钥是为了让客户端把这个对称密钥传给服务器.

⭕总结

感谢大家的阅读,希望得到大家的批评指正,和大家一起进步,与君共勉

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1534597.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

每日一题 --- 27. 移除元素 - 力扣 [Go]

移除元素 题目: 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。 不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不…

C++进阶02 多态性

听课笔记简单整理,供小伙伴们参考~🥝🥝 第1版:听课的记录代码~🧩🧩 编辑:梅头脑🌸 审核:文心一言 目录 🐳课程来源 🐳前言 🐋运…

1.3 Python是什么

Python是什么,Python简介 Python 是荷兰人 Guido van Rossum (吉多范罗苏姆,中国程序员称其为“龟叔”)在 1990 年初开发的一种解释型编程语言。 图1:Python 的标志(Logo) Python 的诞生是极具…

CSS问题精粹1

1.关于消除<li>列表前的符号 我相信很多人在初学CSS时会遇到该问题&#xff0c;无论是创作导航&#xff0c;还是列表&#xff0c;前面都会有个黑点点或其它符号。 解决该问题其实很简单 采用list-style-type:none或list-style:none直接解决 如果你想更换前面的黑点点&a…

计算机网络2 TCP/IP协议

目录 1 前言2 传输层2.1 端口号2.2 UDP2.3 TCP 3 网络层3.1 IP 4 数据链路层4.1 以太网4.2 ARP 5 DNS6 NAT 1 前言 2 传输层 2.1 端口号 端口号又分为&#xff1a; 知名端口&#xff1a;知名程序在启动之后占用的端口号&#xff0c;0-1023。 HTTP, FTP, SSH等这些广为使用的…

LeetCode 21 / 100

目录 矩阵矩阵置零螺旋矩阵旋转图像搜索二维矩阵 II LeetCode 73. 矩阵置零 LeetCode 54. 螺旋矩阵 LeetCode 48. 旋转图像 LeetCode 240. 搜索二维矩阵 II 矩阵 矩阵置零 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为…

Git的 .gitignore文件及标签使用

Git的 .gitignore文件及标签使用 什么是.gitignoregit check-ignore -v 文件名 查看.gitignore里面什么内容忽略了该文件 git add -f [filename] 强制添加把指定文件排除在 .gitignore 规则外的写法给命令配置别名标签创建标签git tag [name] 创建标签git tag 列出所有标签git …

ES高可用

分布式搜索引擎ES 分布式搜索引擎ES1.数据聚合1.1.聚合的种类1.2.DSL实现聚合1.3.RestAPI实现聚合 2.自动补全2.1.拼音分词器2.2.自定义分词器2.3.自动补全查询2.4.实现酒店搜索框自动补全 3.数据同步思路分析 4.集群4.1 ES集群相关概念4.2.集群脑裂问题4.3.集群分布式存储4.4.…

【文末附gpt升级4.0方案】英特尔AI PC的局限性是什么

为什么要推出英特尔AI PC&#xff1f; 英特尔AI PC的推出无疑为AIGC&#xff08;生成式人工智能&#xff09;的未来发展开启了一扇新的大门。这种新型的计算机平台&#xff0c;通过集成先进的硬件技术和优化的软件算法&#xff0c;为AIGC提供了更为强大和高效的支持&#xff0…

掌握增长转化漏斗策略的秘诀:打造高效营销之道

在不断发展的销售和营销领域&#xff0c;传统战略通常遵循一条可预测的路径&#xff0c;引导潜在客户通过漏斗&#xff0c;最终实现销售。然而&#xff0c;一种有趣的方法颠覆了这一传统模式&#xff1a;增长漏斗策略。这种创新方法重新规划了客户旅程&#xff0c;强调了培养现…

矩形总面积(第十四届蓝桥杯JavaB组省赛真题)

测试用例范围比较大&#xff0c;所以全部用long类型&#xff0c;如果用int类型只能通过60%&#xff0c;建议在内存和运行时间允许的情况下&#xff0c;比赛题都用long。 重点在于计算相交的面积&#xff0c;这里找的两个相交点是左上角&#xff08;m1,n1&#xff09;和右下角&a…

二叉搜索树(二叉排序树)(含力扣相关题及题解)

文章目录 二叉搜索树&#xff08;二叉排序树&#xff09;1、二叉搜索树概念2、二叉搜索树的操作2.1、二叉搜索树的查找2.2、二叉搜索树的插入2.2、二叉树的删除 3、二叉搜索树的实现&#xff08;含递归版本&#xff09;4、二叉搜索树的应用4.1、K模型4.2、KV模型 5、二叉搜索树…

5.MySQL创建表单和用户

1.数据库的创建 2.创建表单 3.创建用户 创建好用户之后&#xff0c;让用户只能访问一个表的权限 再创建一个数据库&#xff0c;用户名是刚刚创建的用户&#xff0c;密码是自己设置的密码&#xff0c;这样就缩小了权限。

2024.3.21

qt实现登录界面 #include "mainwindow.h" #include "ui_mainwindow.h"MainWindow::MainWindow(QWidget *parent): QMainWindow(parent), ui(new Ui::MainWindow) {ui->setupUi(this);//设置纯净窗口this->setWindowFlag(Qt::FramelessWindowHint);/…

电影aac是什么意思?如何播放、转换、编辑aac?

"电影AAC"这个术语可能是指电影中的音频编码格式。AAC&#xff08;Advanced Audio Coding&#xff09;是一种常见的音频编码格式&#xff0c;通常用于压缩音频文件&#xff0c;以在保持高质量的同时减小文件大小。在电影中&#xff0c;AAC格式的音频通常用于提供高质…

深入解析Mybatis-Plus框架:简化Java持久层开发(十二)

&#x1f340; 前言 博客地址&#xff1a; CSDN&#xff1a;https://blog.csdn.net/powerbiubiu &#x1f44b; 简介 本章节介绍如何通过Mybatis-Plus进行实现批量新增。 &#x1f4d6; 正文 1 为何要批量插入&#xff1f; 前面章节已经介绍&#xff0c;Mapper接口只有一个…

那些场景需要额外注意线程安全问题

主要学习那些场景需要额外注意线程安全问题&#xff0c;在这里总结了四中场景。 访问共享变量或资源 第一种场景是访问共享变量或共享资源的时候&#xff0c;典型的场景有访问共享对象的属性&#xff0c;访问static静态变量&#xff0c;访问共享的缓存&#xff0c;等等。因为…

React 系列 之 React Hooks(一) JSX本质、理解Hooks

借鉴自极客时间《React Hooks 核心原理与实战》 JSX语法的本质 可以认为JSX是一种语法糖&#xff0c;允许将html和js代码进行结合。 JSX文件会通过babel编译成js文件 下面有一段JSX代码&#xff0c;实现了一个Counter组件 import React from "react";export defau…

【机器学习】深入解析线性回归模型

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

原创!分解+集成思想新模型!VMD-CNN-BiGRU-Attention一键实现时间序列预测!以风速数据集为例

声明&#xff1a;文章是从本人公众号中复制而来&#xff0c;因此&#xff0c;想最新最快了解各类智能优化算法及其改进的朋友&#xff0c;可关注我的公众号&#xff1a;强盛机器学习&#xff0c;不定期会有很多免费代码分享~ 目录 数据介绍 模型流程 创新点 结果展示 部…