ResNet目标检测算法实现交通灯分类

news2024/12/22 23:03:26

红绿灯识别方案:https://zhuanlan.zhihu.com/p/674791906

目录

  • 一、制作数据集
  • 二、ResNet算法
  • 三、pytorch转onnx文件
  • 四、onnx推理测试
  • 五、onnx转mnn

一、制作数据集

1、数据集划分

将红绿灯数据集大文件夹中不同类别的小文件夹中的图片按照9:1进行划分,拆分后分别保存到train和val的文件中

import os
import shutil
import random


def split_dataset(source_folder, destination_folder, split_ratio=0.9):
    # 创建目标文件夹
    train_folder = os.path.join(destination_folder, 'train')
    val_folder = os.path.join(destination_folder, 'val')
    os.makedirs(train_folder, exist_ok=True)
    os.makedirs(val_folder, exist_ok=True)

    # 遍历每个类别的文件夹
    for class_folder in os.listdir(source_folder):
        class_path = os.path.join(source_folder, class_folder)

        # 创建类别的train和val子文件夹
        train_class_path = os.path.join(train_folder, class_folder)
        val_class_path = os.path.join(val_folder, class_folder)
        os.makedirs(train_class_path, exist_ok=True)
        os.makedirs(val_class_path, exist_ok=True)

        # 获取类别文件夹下的所有图片文件
        images = [f for f in os.listdir(class_path) if f.endswith('.jpg')]

        # 计算划分的索引
        split_index = int(len(images) * split_ratio)

        # 随机打乱图片列表
        random.shuffle(images)

        # 将图片拷贝到train文件夹
        for image in images[:split_index]:
            src_path = os.path.join(class_path, image)
            dst_path = os.path.join(train_class_path, image)
            shutil.copy(src_path, dst_path)

        # 将图片拷贝到val文件夹
        for image in images[split_index:]:
            src_path = os.path.join(class_path, image)
            dst_path = os.path.join(val_class_path, image)
            shutil.copy(src_path, dst_path)


if __name__ == "__main__":
    source_folder = "traffic_light"
    destination_folder = "dataset"
    split_dataset(source_folder, destination_folder)

二、ResNet算法

1、ResNet网络模型

model.py

import torch.nn as nn
import torch
 
 
# 定义ResNet18/34的残差结构,为2个3x3的卷积
class BasicBlock(nn.Module):
    # 判断残差结构中,主分支的卷积核个数是否发生变化,不变则为1
    expansion = 1
 
    # init():进行初始化,申明模型中各层的定义
    # downsample=None对应实线残差结构,否则为虚线残差结构
    def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False)
        # 使用批量归一化
        self.bn1 = nn.BatchNorm2d(out_channel)
        # 使用ReLU作为激活函数
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample
 
    # forward():定义前向传播过程,描述了各层之间的连接关系
    def forward(self, x):
        # 残差块保留原始输入
        identity = x
        # 如果是虚线残差结构,则进行下采样
        if self.downsample is not None:
            identity = self.downsample(x)
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        # -----------------------------------------
        out = self.conv2(out)
        out = self.bn2(out)
        # 主分支与shortcut分支数据相加
        out += identity
        out = self.relu(out)
 
        return out
 
 
# 定义ResNet50/101/152的残差结构,为1x1+3x3+1x1的卷积
class Bottleneck(nn.Module):
    # expansion是指在每个小残差块内,减小尺度增加维度的倍数,如64*4=256
    # Bottleneck层输出通道是输入的4倍
    expansion = 4
 
    # init():进行初始化,申明模型中各层的定义
    # downsample=None对应实线残差结构,否则为虚线残差结构,专门用来改变x的通道数
    def __init__(self, in_channel, out_channel, stride=1, downsample=None,
                 groups=1, width_per_group=64):
        super(Bottleneck, self).__init__()
 
        width = int(out_channel * (width_per_group / 64.)) * groups
 
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
                               kernel_size=1, stride=1, bias=False)
        # 使用批量归一化
        self.bn1 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel * self.expansion,
                               kernel_size=1, stride=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channel * self.expansion)
        # 使用ReLU作为激活函数
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
 
    # forward():定义前向传播过程,描述了各层之间的连接关系
    def forward(self, x):
        # 残差块保留原始输入
        identity = x
        # 如果是虚线残差结构,则进行下采样
        if self.downsample is not None:
            identity = self.downsample(x)
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
 
        out = self.conv3(out)
        out = self.bn3(out)
        # 主分支与shortcut分支数据相加
        out += identity
        out = self.relu(out)
 
        return out
 
 
# 定义ResNet类
class ResNet(nn.Module):
    # 初始化函数
    def __init__(self,
                 block,
                 blocks_num,
                 num_classes=28,
                 include_top=True,
                 groups=1,
                 width_per_group=64):
        super(ResNet, self).__init__()
        self.include_top = include_top
        # maxpool的输出通道数为64,残差结构输入通道数为64
        self.in_channel = 64
 
        self.groups = groups
        self.width_per_group = width_per_group
 
        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # 浅层的stride=1,深层的stride=2
        # block:定义的两种残差模块
        # block_num:模块中残差块的个数
        self.layer1 = self._make_layer(block, 64, blocks_num[0])
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
        if self.include_top:
            # 自适应平均池化,指定输出(H,W),通道数不变
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            # 全连接层
            self.fc = nn.Linear(512 * block.expansion, num_classes)
        # 遍历网络中的每一层
        # 继承nn.Module类中的一个方法:self.modules(), 他会返回该网络中的所有modules
        for m in self.modules():
            # isinstance(object, type):如果指定对象是指定类型,则isinstance()函数返回True
            # 如果是卷积层
            if isinstance(m, nn.Conv2d):
                # kaiming正态分布初始化,使得Conv2d卷积层反向传播的输出的方差都为1
                # fan_in:权重是通过线性层(卷积或全连接)隐性确定
                # fan_out:通过创建随机矩阵显式创建权重
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
 
    # 定义残差模块,由若干个残差块组成
    # block:定义的两种残差模块,channel:该模块中所有卷积层的基准通道数。block_num:模块中残差块的个数
    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        # 如果满足条件,则是虚线残差结构
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))
 
        layers = []
        layers.append(block(self.in_channel,
                            channel,
                            downsample=downsample,
                            stride=stride,
                            groups=self.groups,
                            width_per_group=self.width_per_group))
        self.in_channel = channel * block.expansion
 
        for _ in range(1, block_num):
            layers.append(block(self.in_channel,
                                channel,
                                groups=self.groups,
                                width_per_group=self.width_per_group))
        # Sequential:自定义顺序连接成模型,生成网络结构
        return nn.Sequential(*layers)
 
    # forward():定义前向传播过程,描述了各层之间的连接关系
    def forward(self, x):
        # 无论哪种ResNet,都需要的静态层
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        # 动态层
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
 
        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)
 
        return x
 
# ResNet()中block参数对应的位置是BasicBlock或Bottleneck
# ResNet()中blocks_num[0-3]对应[3, 4, 6, 3],表示残差模块中的残差数
# 34层的resnet
def resnet34(num_classes=28, include_top=True):
    # https://download.pytorch.org/models/resnet34-333f7ec4.pth
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
 
 
# 50层的resnet
def resnet50(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
 
 
# 101层的resnet
def resnet101(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)

2、数据集加载与训练

train.py

import os
import sys
import json
 
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from tqdm import tqdm
# 训练resnet34
from model import resnet34
 
 
def main():
    # 如果有NVIDA显卡,转到GPU训练,否则用CPU
    device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))
 
    data_transform = {
        # 训练
        # Compose():将多个transforms的操作整合在一起
        "train": transforms.Compose([
            # RandomResizedCrop(224):将给定图像随机裁剪为不同的大小和宽高比,然后缩放所裁剪得到的图像为给定大小
            transforms.RandomResizedCrop(224),
            # RandomVerticalFlip():以0.5的概率竖直翻转给定的PIL图像
            transforms.RandomHorizontalFlip(),
            # ToTensor():数据转化为Tensor格式
            transforms.ToTensor(),
            # Normalize():将图像的像素值归一化到[-1,1]之间,使模型更容易收敛
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        # 验证
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
    # abspath():获取文件当前目录的绝对路径
    # join():用于拼接文件路径,可以传入多个路径
    # getcwd():该函数不需要传递参数,获得当前所运行脚本的路径
    data_root = os.path.abspath(os.getcwd())
    # 得到数据集的路径
    image_path = os.path.join(data_root, "data")
    # exists():判断括号里的文件是否存在,可以是文件路径
    # 如果image_path不存在,序会抛出AssertionError错误,报错为参数内容“ ”
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])
    # 训练集长度
    train_num = len(train_dataset)
 
    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    # class_to_idx:获取分类名称对应索引
    flower_list = train_dataset.class_to_idx
    # dict():创建一个新的字典
    # 循环遍历数组索引并交换val和key的值重新赋值给数组,这样模型预测的直接就是value类别值
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # 把字典编码成json格式
    json_str = json.dumps(cla_dict, indent=4)
    # 把字典类别索引写入json文件
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)
 
    # 一次训练载入512张图像
    batch_size = 512
    # 确定进程数
    # min():返回给定参数的最小值,参数可以为序列
    # cpu_count():返回一个整数值,表示系统中的CPU数量,如果不确定CPU的数量,则不返回任何内容
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
    print('Using {} dataloader workers every process'.format(nw))
    # DataLoader:将读取的数据按照batch size大小封装给训练集
    # dataset (Dataset):输入的数据集
    # batch_size (int, optional):每个batch加载多少个样本,默认: 1
    # shuffle (bool, optional):设置为True时会在每个epoch重新打乱数据,默认: False
    # num_workers(int, optional): 决定了有几个进程来处理,默认为0意味着所有的数据都会被load进主进程
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)
    # 加载测试数据集
    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    # 测试集长度
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)
 
    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))
 
    # 模型实例化
    net = resnet34()
    net.to(device)
    # 加载预训练模型权重
    # model_weight_path = "./resnet34-pre.pth"
    # exists():判断括号里的文件是否存在,可以是文件路径
    # assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
    # net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))
    # 输入通道数
    # in_channel = net.fc.in_features
    # 全连接层
    # net.fc = nn.Linear(in_channel, 5)
 
    # 定义损失函数(交叉熵损失)
    loss_function = nn.CrossEntropyLoss()
 
    # 抽取模型参数
    params = [p for p in net.parameters() if p.requires_grad]
    # 定义adam优化器
    # params(iterable):要训练的参数,一般传入的是model.parameters()
    # lr(float):learning_rate学习率,也就是步长,默认:1e-3
    optimizer = optim.Adam(params, lr=0.0001)
 
    # 迭代次数(训练次数)
    epochs = 100
    # 用于判断最佳模型
    best_acc = 0.0
    # 最佳模型保存地址
    save_path = './resNet34.pth'
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # 训练
        net.train()
        running_loss = 0.0
        # tqdm:进度条显示
        train_bar = tqdm(train_loader, file=sys.stdout)
        # train_bar: 传入数据(数据包括:训练数据和标签)
        # enumerate():将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中
        # enumerate返回值有两个:一个是序号,一个是数据(包含训练数据和标签)
        # x:训练数据(inputs)(tensor类型的),y:标签(labels)(tensor类型)
        for step, data in enumerate(train_bar):
            # 前向传播
            images, labels = data
            # 计算训练值
            logits = net(images.to(device))
            # 计算损失
            loss = loss_function(logits, labels.to(device))
            # 反向传播
            # 清空过往梯度
            optimizer.zero_grad()
            # 反向传播,计算当前梯度
            loss.backward()
            optimizer.step()
 
            # item():得到元素张量的元素值
            running_loss += loss.item()
 
            # 进度条的前缀
            # .3f:表示浮点数的精度为3(小数位保留3位)
            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)
 
        # 测试
        # eval():如果模型中有Batch Normalization和Dropout,则不启用,以防改变权值
        net.eval()
        acc = 0.0
        # 清空历史梯度,与训练最大的区别是测试过程中取消了反向传播
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                # torch.max(input, dim)函数
                # input是具体的tensor,dim是max函数索引的维度,0是每列的最大值,1是每行的最大值输出
                # 函数会返回两个tensor,第一个tensor是每行的最大值;第二个tensor是每行最大值的索引
                predict_y = torch.max(outputs, dim=1)[1]
                # 对两个张量Tensor进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                # .sum()对输入的tensor数据的某一维度求和
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
 
                val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
                                                           epochs)
 
        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))
 
        # 保存最好的模型权重
        if val_accurate > best_acc:
            best_acc = val_accurate
            # torch.save(state, dir)保存模型等相关参数,dir表示保存文件的路径+保存文件名
            # model.state_dict():返回的是一个OrderedDict,存储了网络结构的名字和对应的参数
            torch.save(net.state_dict(), save_path)
 
    print('Finished Training')
 
 
if __name__ == '__main__':
    main()
  • 效果:

在这里插入图片描述

  • 生成的pth权重文件
    在这里插入图片描述

3、数据集分类测试

根据训练生成的pth权重文件预测
test.py

import os
import json
 
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
 
from model import resnet34
 
 
def main():
    # 如果有NVIDA显卡,转到GPU训练,否则用CPU
    device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
 
    # 将多个transforms的操作整合在一起
    data_transform = transforms.Compose(
        [transforms.Resize(256),
         transforms.CenterCrop(224),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
 
    # 加载图片
    img_path = "./ResNet/data/test/composite/_17479_0.jpg"
    # 确定图片存在,否则反馈错误
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    # imshow():对图像进行处理并显示其格式,show()则是将imshow()处理后的函数显示出来
    plt.imshow(img)
    # [C, H, W],转换图像格式
    img = data_transform(img)
    # [N, C, H, W],增加一个维度N
    img = torch.unsqueeze(img, dim=0)
    plt.show()
    
    # 获取结果类型
    json_path = './ResNet/class_indices.json'
    # 确定路径存在,否则反馈错误
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
    # 读取内容
    with open(json_path, "r") as f:
        class_indict = json.load(f)
 
    # 模型实例化,将模型转到device,结果类型有28种
    model = resnet34(num_classes=28).to(device)
 
    # 载入模型权重
    weights_path = "./ResNet/resNet34.pth"
    # 确定模型存在,否则反馈错误
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    # 加载训练好的模型参数
    model.load_state_dict(torch.load(weights_path, map_location=device))
 
    # 进入验证阶段
    model.eval()
    with torch.no_grad():
        # 预测类别
        # squeeze():维度压缩,返回一个tensor(张量),其中input中大小为1的所有维都已删除
        output = torch.squeeze(model(img.to(device))).cpu()
        # softmax:归一化指数函数,将预测结果输入进行非负性和归一化处理,最后将某一维度值处理为0-1之内的分类概率
        predict = torch.softmax(output, dim=0)
        # argmax(input):返回指定维度最大值的序号
        # .numpy():把tensor转换成numpy的格式
        predict_cla = torch.argmax(predict).numpy()
 
    # 输出的预测值与真实值
    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
 
    # 图片标题
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()
 
 
if __name__ == '__main__':
    main()

可视化展示:

在这里插入图片描述

三、pytorch转onnx文件

将model模型中的resnet34导入其中:

import torch
import torchvision
from model import *  # 引入模型

torch.set_grad_enabled(False)
torch_model = resnet34()  # 初始化网络
torch_model.load_state_dict(torch.load('./ResNet/resNet34.pth'), False)  # 加载训练好的pth模型
batch_size = 1  # 批处理大小
input_shape = (3, 224, 224)  # 输入数据,我这里是灰度训练所以1代表是单通道,RGB训练是3,224是图像输入网络的尺寸

# set the model to inference mode
torch_model.eval().cpu()  # cpu推理

x = torch.randn(batch_size, *input_shape).cpu()  # 生成张量
export_onnx_file = "resnet34_314.onnx"  # 要生成的ONNX文件名
torch.onnx.export(torch_model,
                  x,
                  export_onnx_file,
                  opset_version=10,
                  do_constant_folding=True,  # 是否执行常量折叠优化
                  input_names=["input"],  # 输入名
                  output_names=["output"],  # 输出名
                  dynamic_axes={"input": {0: "batch_size"},  # 批处理变量
                                "output": {0: "batch_size"}})

  • 生成的onnx权重文件
    在这里插入图片描述

四、onnx推理测试

import onnx
import onnxruntime as ort
import numpy as np
import cv2
def preprocess(img_data):
    mean_vec = np.array([0.485, 0.456, 0.406])
    stddev_vec = np.array([0.229, 0.224, 0.225])
    norm_img_data = np.zeros(img_data.shape).astype('float32')
    for i in range(img_data.shape[0]):
    # for each pixel in each channel, divide the value by 255 to get value between [0, 1] and then normalize
        norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
    return norm_img_data

def softmax(x):
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


img = cv2.imread("./data/test/composite/00000136_0.jpg")
img = cv2.resize(img, (224,224), interpolation=cv2.INTER_AREA)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
input_data = np.transpose(img, (2, 0, 1))
input_data = preprocess(input_data)
input_data = input_data.reshape([1, 3, 224, 224])
sess = ort.InferenceSession("./ResNet/resnet34wsy.onnx")
input_name = sess.get_inputs()[0].name
result = sess.run([], {input_name: input_data})
result = np.reshape(result, [1, -1])
result_s = softmax(result)
index = np.argmax(result_s)
print("max index:", index)

五、onnx转mnn

方法一:

1、mnn下载地址

git clone https://github.com/alibaba/MNN

2、编译

cd MNN
./schema/generate.sh
mkdir build
cd build
camke .. -DMNN_BUILD_CONVERTER=true
make -j8

3、运行

根据自己的文件夹路径
./MNNConvert -f ONNX --modelFile XXX.onnx --MNNModel XXX.mnn --bizCode MNN

./MNNConvert -f ONNX --modelFile /home/mengwen/ResNet/traffic_light.onnx --MNNModel /home/mengwen/ResNet/traffic_light.mnn --bizCode MNN

方法二:

一键转换
地址:https://convertmodel.com/

在这里插入图片描述

2、
参考:
1、MNN框架学习(一):编译及使用
2、pytorch模型部署 pth转onnx
3、CNN经典网络模型(五):ResNet简介及代码实现(PyTorch超详细注释版)
4、ONNX格式模型转MNN格式模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1532644.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小程序绕过 sign 签名

之前看到了一篇文章【小程序绕过sign签名思路】之前在做小程序渗透时也遇到了这种情况,但是直接放弃测试了,发现这种思路后,又遇到了这种情况,记录下过程。 并没有漏洞分享,仅仅是把小程序也分享出来,方便…

Idea 不能创建JDK1.8的spring boot项目

由于https://start.springboot.io/ 不支持JDK1.8,那么我们需要换idea的springboot创建源,需要换成 https://start.aliyun.com,这也是网上大部分教程说的,但是我这边会报这样的错误: Initialization failed for https:…

Go --- Go语言垃圾处理

概念 垃圾回收(GC-Garbage Collection)暂停程序业务逻辑SWT(stop the world)程序根节点:程序中被直接或间接引用的对象集合,能通过他们找出所有可以被访问到的对象,所以Go程序的根节点通常包括…

小程序跨端组件库 Mpx-cube-ui 开源:助力高效业务开发与主题定制

Mpx-cube-ui 是一款基于 Mpx 小程序框架的移动端基础组件库,一份源码可以跨端输出所有小程序平台及 Web,同时具备良好的拓展能力和可定制化的能力来帮助你快速构建 Mpx 应用项目。 Mpx-cube-ui 提供了灵活配置的主题定制能力,在组件设计开发阶…

GB28181 —— 5、C++编写GB28181设备端,完成将USB摄像头视频实时转发至GB28181服务并可播放(附源码)

被测试的USB摄像头 效果 源码说明 主要功能模拟设备端,完成注册、注销、心跳等,同时当服务端下发指令播放视频时 设备端实时读取USB摄像头视频并通过OpenCV处理后实时转ps格式后封包rtp进行推送给服务端播放。 源码 /****remark: pes头的封装,里面的具…

ETH Gas 之 Base Fee Priority Fee

前情回顾 ETH网络 之 Gas EIP-1559 EIP-1559 EIP-1559是以太坊改进提案(Ethereum Improvement Proposal),旨在改进以太坊的交易费用机制。该提案引入了一种新的交易费用模型,以提高交易费用的可预测性和网络的效率。我们本文各…

敏捷开发最佳实践:学习与改进维度实践案例之会诊式培养敏捷教练

自组织团队能够定期反思并采取针对性行动来提升人效,但2022年的敏捷调研发现,70%的中国企业在学习和改进方面仍停留在团队级。本节实践案例将分享“会诊式培养敏捷教练”的具体做法,突出了敏捷以人为本的学习和改进,强调了通过人员…

​HTTP与HTTPS:网络通信的安全卫士

✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天开心哦!✨✨ 🎈🎈作者主页: 喔的嘛呀🎈🎈 ✨✨ 帅哥美女们,我们共同加油!一起进步&am…

【SAP-ABAP】CO01保存时错误DBSQL_DUPLICATE_KEY_ERROR

找到该表的主键OBJNR,事务代码SM56中查看当前缓冲到该key的号码段,事务代码SNRO修改对象名称OBJNR编号范围状态。 事务代码SM13查看数据更新记录

音频转换器哪个好?5个角度详细测评~

我们常常会用到音频转换器,比如因为平台和设备对某些格式的不兼容,需要进行格式转换;比如有些音频文件可能过大,需要转换为更高效;压缩格式以节省存储空间或加快传输速度;比如调整音频文件的比特率、采样率…

腾讯云轻量应用服务器CPU型号谁知道?

腾讯云轻量应用服务器CPU型号是什么?轻量服务器处理器主频?腾讯云服务器网txyfwq.com账号下的CPU处理器型号为2.5GHz主频的Intel(R) Xeon(R) Gold 6133 CPU和2.4GHz主频Intel(R) Xeon(R) CPU E5-26xx v4,腾讯云轻量应用服务器不支持指定底层物…

AMPQ和rabbitMQ

RabbitMQ 的 Channel、Connection、Queue 和 Exchange 都是按照 AMQP(Advanced Message Queuing Protocol)标准实现的。 AMPQ的网络部分 AMQP没有使用HTTP,使用TCP自己实现了应用层协议。 AMQP实现了自己特有的网络帧格式。 一个Connection…

蓝桥杯 2023 省A 更小的数

主要思路: 输入一个长度为n的字符串,用二维数组dp[i][j]来记录子串[i, j]是否需要反转一次才能满足条件。使用动态规划自底向上地填充dp数组。根据问题的要求,需要考虑字符串的子串中字符的大小关系来判断是否需要反转。最后统计满足条件的子…

航空实时监控

1、从Kafka中读取飞机数据,并进行清洗 此步骤在前面的“使用Spark清洗统计业务数据并保存到数据库中”任务阶段应该已经完成。如果没有完成,请参考源代码自行完成。核心类主要有三个:SparkStreamingApplication类、SparkUtil类和MapManager类…

Cache缓存:HTTP缓存策略解析

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

处理器方法的返回值--返回对象Object

处理器方法也可以返回Object对象。这个Object可以是Integer,String,自定义对象, Map,List 等。但返回的对象不是作为逻辑视图出现的,而是作为直接在页面显示的数据出现的。 返回对象,需要使用ResponseBody注…

全面整理!机器学习常用的回归预测模型(表格数据)

文章目录 一、前言二、线性模型三、非线性模型 🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 一、前言 回归预测建模的核心是学习输入 X X X 到输出 y y y (其中 y y y 是连续值向量)的映射关系。条件期望 E ( Y ∣ X x…

C# Stable Diffusion using ONNX Runtime

C# Stable Diffusion using ONNX Runtime github地址:https://github.com/saddam213/OnnxStack Welcome to OnnxStack! OnnxStack transforms machine learning in .NET, Seamlessly integrating with ONNX Runtime and Microsoft ML, this library empowers you …

OpenAI CEO透露GPT-4表现“有点糟糕”;通义听悟音视频问答登场;Adobe整合AI功能助力3D设计创作

🦉 AI新闻 🚀 OpenAI CEO透露GPT-4表现“有点糟糕” 摘要:OpenAI的首席执行官Sam Altman在与Lex Fridman的访谈中表示,GPT-4的表现并不令人满意,认为其“有点糟糕”,同时对即将到来的GPT-5寄予厚望。Altm…

HarmonyOS NEXT应用开发之Web组件预览PDF文件实现案例

介绍 本案例通过Web组件实现预览本地PDF文件和预览网络PDF文件,代码为Tabs容器组件包含了两个独立的TabContent子组件,分别标示为预览本地PDF文件和预览网络PDF文件。每个子组件内部构建一个Web组件。第一个Web组件利用resource协议关联本地PDF文件路径…