超分辨率(3)--基于RCAN网络实现图像超分辨率重建

news2024/11/23 22:48:12

目录

一.项目介绍

二.项目流程详解

2.1.数据处理模块

2.2.损失函数设置 

2.3.网络模型构建

三.测试网络


一.项目介绍

RCAN:Residual Channel Attention Network(残差通道注意网络 )

卷积神经网络(CNN)的深度对于图像超分辨率(SR)是极其关键的因素。然而,我们观察到,更深层次的图像SR网络更难训练。低分辨率的输入和特征包含丰富的低频信息,这些信息在通道间被平等对待,从而阻碍了CNNs的表征能力。为了解决这些问题,我们提出了一种非常深的残差通道注意网络(RCAN)。具体地,我们提出了一种residual in residual(RIR)结构来形成非常深的网络,它由几个具有长跳连接的残差组组成。每个残差组包含一些具有短跳连接的残差块。与此同时,RIR允许大量的低频信息通过多个跳跃连接被绕过,使得主网络专注于学习高频信息。在此基础上,我们提出了一种通道注意机制,通过考虑通道间的相互依赖关系,自适应地重新调整通道特征。大量的实验表明,与比之前最先进的方法相比,我们的RCAN实现了更好的精度和视觉效果。

背景:

  • 卷积神经网络(CNN)的深度对于图像超分辨率(SR)是极其关键的因素。然而,作者观察到,更深层次的图像SR网络更难训练。
  • 低分辨率图像(LR)的输入和特征包含大量的低频信息,这些信息在通道间被平等对待,从而阻碍了CNNs的表征能力。

解决方案:

  • 对于第一个更深的网络更难训练的问题,作者研究发现,通过在网络中引入残差块,这种残差块使得网络达到了1000层,但是仅仅通过叠加残差块来构建更深的网络很难获得更好的提升效果。因此,作者提出了残差嵌套(residual in residual,RIR)结构构造非常深的可训练网络,RIR中的长跳连接和短跳连接有助于绕过大量的低频信息,使主网络学习到更有效的信息。
  • 对于第二个LR输入低频和高频信息在通道被平等对待的问题,作者发现注意力可以使可用处理资源的分配偏向于输入中信息量最大的部分,因此引入通道注意(Channel Attention ,CA)机制。

网络架构:

RCAN主要由四个部分组成:浅层特征提取、残差嵌套(RIR)深度特征提取、上采样模块和重建部分。 

  •  RIR组成:G个RG(带长跳连接)
  • 每个RG:B个RCAB组成(带短跳连接)
  • 每个RCAB组成:Conv + ReLU + Conv + CA
  • CA组成:Global pooling + Conv + ReLU + Conv  

名词解释:

  • Residual Channel Attention Network,RCAN:残差通道注意网络
  • residual in residua,RIR:残差嵌套
  • residual groups,RG:残差组
  • Residual Channel Attention Block,RCAB:残差通道注意块
  • Channel Attention,CA:通道注意
  • long skip connection,LSC:长跳连接
  • short skip connection,SSC:短跳连接

论文地址:

[1807.02758] Image Super-Resolution Using Very Deep Residual Channel Attention Networks (arxiv.org)icon-default.png?t=N7T8https://arxiv.org/abs/1807.02758

参考文章: 

RCAN论文笔记:Image Super-Resolution Using Very Deep Residual Channel Attention Networks-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/weixin_46773169/article/details/105600346

源码地址:

yulunzhang/RCAN: PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks" (github.com)icon-default.png?t=N7T8https://github.com/yulunzhang/RCAN

二.项目流程详解

2.1.数据处理模块

_init_.py

from importlib import import_module

from dataloader import MSDataLoader
from torch.utils.data.dataloader import default_collate

class Data:
    def __init__(self, args):
        kwargs = {}
        # 如果不在cpu上训练
        if not args.cpu:
            kwargs['collate_fn'] = default_collate
            kwargs['pin_memory'] = True
        # 在cpu上训练
        else:
            kwargs['collate_fn'] = default_collate
            kwargs['pin_memory'] = False

        self.loader_train = None
        if not args.test_only:
            # .lower()将大写字母转换为小写字母
            module_train = import_module('data.' + args.data_train.lower())
            # getattr() 函数用于返回一个对象属性值。
            trainset = getattr(module_train, args.data_train)(args)
            self.loader_train = MSDataLoader(
                args,
                trainset,
                batch_size=args.batch_size,
                shuffle=True,
                **kwargs
            )

        # 针对特殊的数据
        if args.data_test in ['Set5', 'Set14', 'B100', 'Urban100']:
            if not args.benchmark_noise:
                module_test = import_module('data.benchmark')
                testset = getattr(module_test, 'Benchmark')(args, train=False)
            else:
                module_test = import_module('data.benchmark_noise')
                testset = getattr(module_test, 'BenchmarkNoise')(
                    args,
                    train=False
                )

        else:
            module_test = import_module('data.' +  args.data_test.lower())
            testset = getattr(module_test, args.data_test)(args, train=False)

        # 对于自定义的MSDataLoader,主要需要传入的参数为args和dataset
        self.loader_test = MSDataLoader(
            args,
            testset,
            batch_size=1,
            shuffle=False,
            **kwargs
        )

'''
class MSDataLoader(DataLoader):
    def __init__(
        self, args, dataset, batch_size=1, shuffle=False,
        sampler=None, batch_sampler=None,
        collate_fn=default_collate, pin_memory=False, drop_last=False,
        timeout=0, worker_init_fn=None):

        super(MSDataLoader, self).__init__(
            dataset, batch_size=batch_size, shuffle=shuffle,
            sampler=sampler, batch_sampler=batch_sampler,
            num_workers=args.n_threads, collate_fn=collate_fn,
            pin_memory=pin_memory, drop_last=drop_last,
            timeout=timeout, worker_init_fn=worker_init_fn)

        self.scale = args.scale

    def __iter__(self):
        return _MSDataLoaderIter(self)
'''

benchmark.py

import os

from data import common
from data import srdata

import numpy as np
import scipy.misc as misc

import torch
import torch.utils.data as data

class Benchmark(srdata.SRData):
    def __init__(self, args, train=True):
        super(Benchmark, self).__init__(args, train, benchmark=True)

    # 扫描磁盘得到数据
    def _scan(self):
        list_hr = []
        list_lr = [[] for _ in self.scale]
        for entry in os.scandir(self.dir_hr):
            # os.path.splitext分离文件名字和文件类型
            # eg: os.path.splitext(abc.txt) 得到的为('abc','txt')
            # filename取出的是文件名
            filename = os.path.splitext(entry.name)[0]
            # filename + self.ext 为文件的完整名字
            # os.path.join用于拼接文件路径,可以传入多个路径
            # 此处append的文件路径即为 self.dir_hr + (filename+self.ext)
            list_hr.append(os.path.join(self.dir_hr, filename + self.ext))
            for si, s in enumerate(self.scale):
                list_lr[si].append(os.path.join(
                    self.dir_lr,
                    'X{}/{}x{}{}'.format(s, filename, s, self.ext)
                ))

        # 对取出的数据进行升序排列
        list_hr.sort()
        for l in list_lr:
            l.sort()

        return list_hr, list_lr

    # 设置数据的地址以及数据的类型
    def _set_filesystem(self, dir_data):
        self.apath = os.path.join(dir_data, 'benchmark', self.args.data_test)
        self.dir_hr = os.path.join(self.apath, 'HR')
        self.dir_lr = os.path.join(self.apath, 'LR_bicubic')
        self.ext = '.png'

 common.py

import random

import numpy as np
import skimage.io as sio
import skimage.color as sc
import skimage.transform as st

import torch
from torchvision import transforms

def get_patch(img_in, img_tar, patch_size, scale, multi_scale=False):
    # shape得到图片的高度、宽度、颜色通道
    # 所以shape[:2}就是获取图片的前两个维度,获得图片的高度和宽度

    ih, iw = img_in.shape[:2]

    p = scale if multi_scale else 1
    tp = p * patch_size
    ip = tp // scale

    ix = random.randrange(0, iw - ip + 1)
    iy = random.randrange(0, ih - ip + 1)
    tx, ty = scale * ix, scale * iy

    img_in = img_in[iy:iy + ip, ix:ix + ip, :]
    img_tar = img_tar[ty:ty + tp, tx:tx + tp, :]

    return img_in, img_tar

# 设置channel值
def set_channel(l, n_channel):
    def _set_channel(img):
        if img.ndim == 2:
            # expand_dims(a, axis)中,a为numpy数组,axis为需添加维度的轴
            # 使数据增加一个维度
            img = np.expand_dims(img, axis=2)

        c = img.shape[2]
        if n_channel == 1 and c == 3:
            img = np.expand_dims(sc.rgb2ycbcr(img)[:, :, 0], 2)
        elif n_channel == 3 and c == 1:
            # numpy.concatenate((a1,a2,...), axis=0)函数。
            # 能 够一次完成多个数组的拼接。其中a1,a2,...是数组类型的参数
            img = np.concatenate([img] * n_channel, 2)

        return img

    return [_set_channel(_l) for _l in l]

# 将np.array类型转为tensor类型
def np2Tensor(l, rgb_range):
    def _np2Tensor(img):
        # ascontiguousarray函数将一个内存不连续存储的数组转换为内存连续存储的数组,使得运行速度更快
        # img.transpose((2,0,1))将图片的维度由(0,1,2)转换为(2,0,1)
        np_transpose = np.ascontiguousarray(img.transpose((2, 0, 1)))
        tensor = torch.from_numpy(np_transpose).float()
        tensor.mul_(rgb_range / 255)

        return tensor

    return [_np2Tensor(_l) for _l in l]

def add_noise(x, noise='.'):
    if noise is not '.':
        noise_type = noise[0]
        noise_value = int(noise[1:])
        if noise_type == 'G':
            noises = np.random.normal(scale=noise_value, size=x.shape)
            noises = noises.round()
        elif noise_type == 'S':
            noises = np.random.poisson(x * noise_value) / noise_value
            noises = noises - noises.mean(axis=0).mean(axis=0)

        x_noise = x.astype(np.int16) + noises.astype(np.int16)
        x_noise = x_noise.clip(0, 255).astype(np.uint8)
        return x_noise
    else:
        return x

def augment(l, hflip=True, rot=True):
    hflip = hflip and random.random() < 0.5
    vflip = rot and random.random() < 0.5
    rot90 = rot and random.random() < 0.5

    def _augment(img):
        if hflip: img = img[:, ::-1, :]
        if vflip: img = img[::-1, :, :]
        if rot90: img = img.transpose(1, 0, 2)
        
        return img

    return [_augment(_l) for _l in l]

demo.py 

import os

from data import common

import numpy as np
import scipy.misc as misc

import torch
import torch.utils.data as data

class Demo(data.Dataset):
    def __init__(self, args, train=False):
        self.args = args
        self.name = 'Demo'
        self.scale = args.scale
        self.idx_scale = 0
        self.train = False
        self.benchmark = False

        self.filelist = []
        for f in os.listdir(args.dir_demo):
            if f.find('.png') >= 0 or f.find('.jp') >= 0:
                self.filelist.append(os.path.join(args.dir_demo, f))
        self.filelist.sort()

    def __getitem__(self, idx):
        filename = os.path.split(self.filelist[idx])[-1]
        filename, _ = os.path.splitext(filename)
        lr = misc.imread(self.filelist[idx])
        lr = common.set_channel([lr], self.args.n_colors)[0]

        return common.np2Tensor([lr], self.args.rgb_range)[0], -1, filename

    def __len__(self):
        return len(self.filelist)

    def set_scale(self, idx_scale):
        self.idx_scale = idx_scale

srdata.py

import os

from data import common

import numpy as np
import scipy.misc as misc

import torch
import torch.utils.data as data

class SRData(data.Dataset):
    def __init__(self, args, train=True, benchmark=False):
        self.args = args
        self.train = train
        self.split = 'train' if train else 'test'
        self.benchmark = benchmark
        self.scale = args.scale
        self.idx_scale = 0

        self._set_filesystem(args.dir_data)

        def _load_bin():
            self.images_hr = np.load(self._name_hrbin())
            self.images_lr = [
                np.load(self._name_lrbin(s)) for s in self.scale
            ]

        if args.ext == 'img' or benchmark:
            self.images_hr, self.images_lr = self._scan()
        elif args.ext.find('sep') >= 0:
            self.images_hr, self.images_lr = self._scan()
            if args.ext.find('reset') >= 0:
                print('Preparing seperated binary files')
                for v in self.images_hr:
                    hr = misc.imread(v)
                    name_sep = v.replace(self.ext, '.npy')
                    np.save(name_sep, hr)
                for si, s in enumerate(self.scale):
                    for v in self.images_lr[si]:
                        lr = misc.imread(v)
                        name_sep = v.replace(self.ext, '.npy')
                        np.save(name_sep, lr)

            self.images_hr = [
                v.replace(self.ext, '.npy') for v in self.images_hr
            ]
            self.images_lr = [
                [v.replace(self.ext, '.npy') for v in self.images_lr[i]]
                for i in range(len(self.scale))
            ]

        elif args.ext.find('bin') >= 0:
            try:
                if args.ext.find('reset') >= 0:
                    raise IOError
                print('Loading a binary file')
                _load_bin()
            except:
                print('Preparing a binary file')
                bin_path = os.path.join(self.apath, 'bin')
                if not os.path.isdir(bin_path):
                    os.mkdir(bin_path)

                list_hr, list_lr = self._scan()
                hr = [misc.imread(f) for f in list_hr]
                np.save(self._name_hrbin(), hr)
                del hr
                for si, s in enumerate(self.scale):
                    lr_scale = [misc.imread(f) for f in list_lr[si]]
                    np.save(self._name_lrbin(s), lr_scale)
                    del lr_scale
                _load_bin()
        else:
            print('Please define data type')

    def _scan(self):
        raise NotImplementedError

    def _set_filesystem(self, dir_data):
        raise NotImplementedError

    def _name_hrbin(self):
        raise NotImplementedError

    def _name_lrbin(self, scale):
        raise NotImplementedError

    def __getitem__(self, idx):
        lr, hr, filename = self._load_file(idx)
        lr, hr = self._get_patch(lr, hr)
        lr, hr = common.set_channel([lr, hr], self.args.n_colors)
        lr_tensor, hr_tensor = common.np2Tensor([lr, hr], self.args.rgb_range)
        return lr_tensor, hr_tensor, filename

    def __len__(self):
        return len(self.images_hr)

    def _get_index(self, idx):
        return idx

    def _load_file(self, idx):
        idx = self._get_index(idx)
        lr = self.images_lr[self.idx_scale][idx]
        hr = self.images_hr[idx]
        if self.args.ext == 'img' or self.benchmark:
            filename = hr
            lr = misc.imread(lr)
            hr = misc.imread(hr)
        elif self.args.ext.find('sep') >= 0:
            filename = hr
            lr = np.load(lr)
            hr = np.load(hr)
        else:
            filename = str(idx + 1)

        filename = os.path.splitext(os.path.split(filename)[-1])[0]

        return lr, hr, filename

    def _get_patch(self, lr, hr):
        patch_size = self.args.patch_size
        scale = self.scale[self.idx_scale]
        multi_scale = len(self.scale) > 1
        if self.train:
            lr, hr = common.get_patch(
                lr, hr, patch_size, scale, multi_scale=multi_scale
            )
            lr, hr = common.augment([lr, hr])
            lr = common.add_noise(lr, self.args.noise)
        else:
            ih, iw = lr.shape[0:2]
            hr = hr[0:ih * scale, 0:iw * scale]

        return lr, hr

    def set_scale(self, idx_scale):
        self.idx_scale = idx_scale

div2k.py 

import os

from data import common
from data import srdata

import numpy as np
import scipy.misc as misc

import torch
import torch.utils.data as data

class DIV2K(srdata.SRData):
    def __init__(self, args, train=True):
        super(DIV2K, self).__init__(args, train)
        self.repeat = args.test_every // (args.n_train // args.batch_size)

    def _scan(self):
        list_hr = []
        list_lr = [[] for _ in self.scale]
        if self.train:
            idx_begin = 0
            idx_end = self.args.n_train
        else:
            idx_begin = self.args.n_train
            idx_end = self.args.offset_val + self.args.n_val

        for i in range(idx_begin + 1, idx_end + 1):
            filename = '{:0>4}'.format(i)
            list_hr.append(os.path.join(self.dir_hr, filename + self.ext))
            for si, s in enumerate(self.scale):
                list_lr[si].append(os.path.join(
                    self.dir_lr,
                    'X{}/{}x{}{}'.format(s, filename, s, self.ext)
                ))

        return list_hr, list_lr

    def _set_filesystem(self, dir_data):
        self.apath = dir_data + '/DIV2K'
        self.dir_hr = os.path.join(self.apath, 'DIV2K_train_HR')
        self.dir_lr = os.path.join(self.apath, 'DIV2K_train_LR_bicubic')
        self.ext = '.png'

    def _name_hrbin(self):
        return os.path.join(
            self.apath,
            'bin',
            '{}_bin_HR.npy'.format(self.split)
        )

    def _name_lrbin(self, scale):
        return os.path.join(
            self.apath,
            'bin',
            '{}_bin_LR_X{}.npy'.format(self.split, scale)
        )

    def __len__(self):
        if self.train:
            return len(self.images_hr) * self.repeat
        else:
            return len(self.images_hr)

    def _get_index(self, idx):
        if self.train:
            return idx % len(self.images_hr)
        else:
            return idx

2.2.损失函数设置 

_init_.py

import os
from importlib import import_module

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

class Loss(nn.modules.loss._Loss):
    def __init__(self, args, ckp):
        super(Loss, self).__init__()
        print('Preparing loss function:')

        self.n_GPUs = args.n_GPUs
        self.loss = []
        # 首先说说 nn.ModuleList 这个类,你可以把任意 nn.Module 的子类
        # (比如 nn.Conv2d, nn.Linear 之类的) 加到这个 list 里面,
        # 方法和 Python 自带的 list 一样,无非是 extend,append 等操作。
        # 但不同于一般的 list,加入到 nn.ModuleList 里面的 module 是会自动注册到整个网络上的,
        # 同时 module 的 parameters 也会自动添加到整个网络中。
        self.loss_module = nn.ModuleList()
        # split(' ')根据括号里的字符分割字符串
        for loss in args.loss.split('+'):
            weight, loss_type = loss.split('*')
            if loss_type == 'MSE':
                loss_function = nn.MSELoss()
            elif loss_type == 'L1':
                loss_function = nn.L1Loss()
            elif loss_type.find('VGG') >= 0:
                module = import_module('loss.vgg')
                loss_function = getattr(module, 'VGG')(
                    loss_type[3:],
                    rgb_range=args.rgb_range
                )
            elif loss_type.find('GAN') >= 0:
                module = import_module('loss.adversarial')
                loss_function = getattr(module, 'Adversarial')(
                    args,
                    loss_type
                )
           
            self.loss.append({
                'type': loss_type,
                'weight': float(weight),
                'function': loss_function}
            )
            if loss_type.find('GAN') >= 0:
                self.loss.append({'type': 'DIS', 'weight': 1, 'function': None})

        if len(self.loss) > 1:
            self.loss.append({'type': 'Total', 'weight': 0, 'function': None})

        for l in self.loss:
            if l['function'] is not None:
                print('{:.3f} * {}'.format(l['weight'], l['type']))
                self.loss_module.append(l['function'])

        self.log = torch.Tensor()

        device = torch.device('cpu' if args.cpu else 'cuda')
        self.loss_module.to(device)
        if args.precision == 'half': self.loss_module.half()
        if not args.cpu and args.n_GPUs > 1:
            self.loss_module = nn.DataParallel(
                self.loss_module, range(args.n_GPUs)
            )

        if args.load != '.': self.load(ckp.dir, cpu=args.cpu)

    def forward(self, sr, hr):
        losses = []
        for i, l in enumerate(self.loss):
            if l['function'] is not None:
                loss = l['function'](sr, hr)
                effective_loss = l['weight'] * loss
                losses.append(effective_loss)
                self.log[-1, i] += effective_loss.item()
            elif l['type'] == 'DIS':
                self.log[-1, i] += self.loss[i - 1]['function'].loss

        loss_sum = sum(losses)
        if len(self.loss) > 1:
            self.log[-1, -1] += loss_sum.item()

        return loss_sum

    def step(self):
        for l in self.get_loss_module():
            if hasattr(l, 'scheduler'):
                l.scheduler.step()

    def start_log(self):
        self.log = torch.cat((self.log, torch.zeros(1, len(self.loss))))

    def end_log(self, n_batches):
        self.log[-1].div_(n_batches)

    def display_loss(self, batch):
        n_samples = batch + 1
        log = []
        for l, c in zip(self.loss, self.log[-1]):
            log.append('[{}: {:.4f}]'.format(l['type'], c / n_samples))

        return ''.join(log)

    def plot_loss(self, apath, epoch):
        axis = np.linspace(1, epoch, epoch)
        for i, l in enumerate(self.loss):
            label = '{} Loss'.format(l['type'])
            fig = plt.figure()
            plt.title(label)
            plt.plot(axis, self.log[:, i].numpy(), label=label)
            plt.legend()
            plt.xlabel('Epochs')
            plt.ylabel('Loss')
            plt.grid(True)
            plt.savefig('{}/loss_{}.pdf'.format(apath, l['type']))
            plt.close(fig)

    def get_loss_module(self):
        if self.n_GPUs == 1:
            return self.loss_module
        else:
            return self.loss_module.module

    def save(self, apath):
        torch.save(self.state_dict(), os.path.join(apath, 'loss.pt'))
        torch.save(self.log, os.path.join(apath, 'loss_log.pt'))

    def load(self, apath, cpu=False):
        if cpu:
            kwargs = {'map_location': lambda storage, loc: storage}
        else:
            kwargs = {}

        self.load_state_dict(torch.load(
            os.path.join(apath, 'loss.pt'),
            **kwargs
        ))
        self.log = torch.load(os.path.join(apath, 'loss_log.pt'))
        for l in self.get_loss_module():
            if hasattr(l, 'scheduler'):
                for _ in range(len(self.log)): l.scheduler.step()

 adversarial.py

import utility
from model import common
from loss import discriminator

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable

class Adversarial(nn.Module):
    def __init__(self, args, gan_type):
        super(Adversarial, self).__init__()
        self.gan_type = gan_type
        self.gan_k = args.gan_k
        self.discriminator = discriminator.Discriminator(args, gan_type)
        if gan_type != 'WGAN_GP':
            self.optimizer = utility.make_optimizer(args, self.discriminator)
        else:
            self.optimizer = optim.Adam(
                self.discriminator.parameters(),
                betas=(0, 0.9), eps=1e-8, lr=1e-5
            )
        self.scheduler = utility.make_scheduler(args, self.optimizer)

    def forward(self, fake, real):
        fake_detach = fake.detach()

        self.loss = 0
        for _ in range(self.gan_k):
            self.optimizer.zero_grad()
            d_fake = self.discriminator(fake_detach)
            d_real = self.discriminator(real)
            if self.gan_type == 'GAN':
                label_fake = torch.zeros_like(d_fake)
                label_real = torch.ones_like(d_real)
                loss_d \
                    = F.binary_cross_entropy_with_logits(d_fake, label_fake) \
                    + F.binary_cross_entropy_with_logits(d_real, label_real)
            elif self.gan_type.find('WGAN') >= 0:
                loss_d = (d_fake - d_real).mean()
                if self.gan_type.find('GP') >= 0:
                    epsilon = torch.rand_like(fake).view(-1, 1, 1, 1)
                    hat = fake_detach.mul(1 - epsilon) + real.mul(epsilon)
                    hat.requires_grad = True
                    d_hat = self.discriminator(hat)
                    gradients = torch.autograd.grad(
                        outputs=d_hat.sum(), inputs=hat,
                        retain_graph=True, create_graph=True, only_inputs=True
                    )[0]
                    gradients = gradients.view(gradients.size(0), -1)
                    gradient_norm = gradients.norm(2, dim=1)
                    gradient_penalty = 10 * gradient_norm.sub(1).pow(2).mean()
                    loss_d += gradient_penalty

            # Discriminator update
            self.loss += loss_d.item()
            loss_d.backward()
            self.optimizer.step()

            if self.gan_type == 'WGAN':
                for p in self.discriminator.parameters():
                    p.data.clamp_(-1, 1)

        self.loss /= self.gan_k

        d_fake_for_g = self.discriminator(fake)
        if self.gan_type == 'GAN':
            loss_g = F.binary_cross_entropy_with_logits(
                d_fake_for_g, label_real
            )
        elif self.gan_type.find('WGAN') >= 0:
            loss_g = -d_fake_for_g.mean()

        # Generator loss
        return loss_g
    
    def state_dict(self, *args, **kwargs):
        state_discriminator = self.discriminator.state_dict(*args, **kwargs)
        state_optimizer = self.optimizer.state_dict()

        return dict(**state_discriminator, **state_optimizer)
               
# Some references
# https://github.com/kuc2477/pytorch-wgan-gp/blob/master/model.py
# OR
# https://github.com/caogang/wgan-gp/blob/master/gan_cifar10.py

discriminator.py 

from model import common

import torch.nn as nn

class Discriminator(nn.Module):
    def __init__(self, args, gan_type='GAN'):
        super(Discriminator, self).__init__()

        in_channels = 3
        out_channels = 64
        depth = 7
        #bn = not gan_type == 'WGAN_GP'
        bn = True
        act = nn.LeakyReLU(negative_slope=0.2, inplace=True)

        m_features = [
            common.BasicBlock(args.n_colors, out_channels, 3, bn=bn, act=act)
        ]
        for i in range(depth):
            in_channels = out_channels
            if i % 2 == 1:
                stride = 1
                out_channels *= 2
            else:
                stride = 2
            m_features.append(common.BasicBlock(
                in_channels, out_channels, 3, stride=stride, bn=bn, act=act
            ))

        self.features = nn.Sequential(*m_features)

        patch_size = args.patch_size // (2**((depth + 1) // 2))
        m_classifier = [
            nn.Linear(out_channels * patch_size**2, 1024),
            act,
            nn.Linear(1024, 1)
        ]
        self.classifier = nn.Sequential(*m_classifier)

    def forward(self, x):
        features = self.features(x)
        output = self.classifier(features.view(features.size(0), -1))

        return output

vgg.py 

from model import common

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
from torch.autograd import Variable

class VGG(nn.Module):
    def __init__(self, conv_index, rgb_range=1):
        super(VGG, self).__init__()
        # pretrained = True 表示使用已经训练过的参数
        vgg_features = models.vgg19(pretrained=True).features
        modules = [m for m in vgg_features]
        if conv_index == '22':
            self.vgg = nn.Sequential(*modules[:8])
        elif conv_index == '54':
            self.vgg = nn.Sequential(*modules[:35])

        vgg_mean = (0.485, 0.456, 0.406)
        vgg_std = (0.229 * rgb_range, 0.224 * rgb_range, 0.225 * rgb_range)
        self.sub_mean = common.MeanShift(rgb_range, vgg_mean, vgg_std)
        self.vgg.requires_grad = False

    def forward(self, sr, hr):
        def _forward(x):
            x = self.sub_mean(x)
            x = self.vgg(x)
            return x
            
        vgg_sr = _forward(sr)
        with torch.no_grad():
            vgg_hr = _forward(hr.detach())

        loss = F.mse_loss(vgg_sr, vgg_hr)

        return loss

2.3.网络模型构建

dataloader.py

import sys
import threading
import queue
import random
import collections

import torch
import torch.multiprocessing as multiprocessing

from torch._C import _set_worker_signal_handlers, _update_worker_pids, \
    _remove_worker_pids, _error_if_any_worker_fails
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataloader import _DataLoaderIter

from torch.utils.data.dataloader import ExceptionWrapper
from torch.utils.data.dataloader import _use_shared_memory
from torch.utils.data.dataloader import _worker_manager_loop
from torch.utils.data.dataloader import numpy_type_map
from torch.utils.data.dataloader import default_collate
from torch.utils.data.dataloader import pin_memory_batch
from torch.utils.data.dataloader import _SIGCHLD_handler_set
from torch.utils.data.dataloader import _set_SIGCHLD_handler

if sys.version_info[0] == 2:
    import Queue as queue
else:
    import queue

def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id):
    global _use_shared_memory
    _use_shared_memory = True
    _set_worker_signal_handlers()

    torch.set_num_threads(1)
    torch.manual_seed(seed)
    while True:
        r = index_queue.get()
        if r is None:
            break
        idx, batch_indices = r
        try:
            idx_scale = 0
            if len(scale) > 1 and dataset.train:
                idx_scale = random.randrange(0, len(scale))
                dataset.set_scale(idx_scale)

            samples = collate_fn([dataset[i] for i in batch_indices])
            samples.append(idx_scale)

        except Exception:
            data_queue.put((idx, ExceptionWrapper(sys.exc_info())))
        else:
            data_queue.put((idx, samples))

class _MSDataLoaderIter(_DataLoaderIter):
    def __init__(self, loader):
        self.dataset = loader.dataset
        self.scale = loader.scale
        self.collate_fn = loader.collate_fn
        self.batch_sampler = loader.batch_sampler
        self.num_workers = loader.num_workers
        self.pin_memory = loader.pin_memory and torch.cuda.is_available()
        self.timeout = loader.timeout
        self.done_event = threading.Event()

        self.sample_iter = iter(self.batch_sampler)

        if self.num_workers > 0:
            self.worker_init_fn = loader.worker_init_fn
            self.index_queues = [
                multiprocessing.Queue() for _ in range(self.num_workers)
            ]
            self.worker_queue_idx = 0
            self.worker_result_queue = multiprocessing.SimpleQueue()
            self.batches_outstanding = 0
            self.worker_pids_set = False
            self.shutdown = False
            self.send_idx = 0
            self.rcvd_idx = 0
            self.reorder_dict = {}

            base_seed = torch.LongTensor(1).random_()[0]
            self.workers = [
                multiprocessing.Process(
                    target=_ms_loop,
                    args=(
                        self.dataset,
                        self.index_queues[i],
                        self.worker_result_queue,
                        self.collate_fn,
                        self.scale,
                        base_seed + i,
                        self.worker_init_fn,
                        i
                    )
                )
                for i in range(self.num_workers)]

            if self.pin_memory or self.timeout > 0:
                self.data_queue = queue.Queue()
                if self.pin_memory:
                    maybe_device_id = torch.cuda.current_device()
                else:
                    # do not initialize cuda context if not necessary
                    maybe_device_id = None
                self.worker_manager_thread = threading.Thread(
                    target=_worker_manager_loop,
                    args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
                          maybe_device_id))
                self.worker_manager_thread.daemon = True
                self.worker_manager_thread.start()
            else:
                self.data_queue = self.worker_result_queue

            for w in self.workers:
                w.daemon = True  # ensure that the worker exits on process exit
                w.start()

            _update_worker_pids(id(self), tuple(w.pid for w in self.workers))
            _set_SIGCHLD_handler()
            self.worker_pids_set = True

            # prime the prefetch loop
            for _ in range(2 * self.num_workers):
                self._put_indices()

class MSDataLoader(DataLoader):
    def __init__(
        self, args, dataset, batch_size=1, shuffle=False,
        sampler=None, batch_sampler=None,
        collate_fn=default_collate, pin_memory=False, drop_last=False,
        timeout=0, worker_init_fn=None):

        super(MSDataLoader, self).__init__(
            dataset, batch_size=batch_size, shuffle=shuffle,
            sampler=sampler, batch_sampler=batch_sampler,
            num_workers=args.n_threads, collate_fn=collate_fn,
            pin_memory=pin_memory, drop_last=drop_last,
            timeout=timeout, worker_init_fn=worker_init_fn)

        self.scale = args.scale

    def __iter__(self):
        return _MSDataLoaderIter(self)

 main.py

import torch

import utility
import data
import model
import loss
from option import args
from trainer import Trainer

torch.manual_seed(args.seed)
checkpoint = utility.checkpoint(args)

if checkpoint.ok:
    loader = data.Data(args)
    model = model.Model(args, checkpoint)
    loss = loss.Loss(args, checkpoint) if not args.test_only else None
    t = Trainer(args, loader, model, loss, checkpoint)
    while not t.terminate():
        t.train()
        t.test()

    checkpoint.done()

 option.py

import argparse
import template

parser = argparse.ArgumentParser(description='EDSR and MDSR')

parser.add_argument('--debug', action='store_true',
                    help='Enables debug mode')
parser.add_argument('--template', default='.',
                    help='You can set various templates in option.py')

# Hardware specifications
parser.add_argument('--n_threads', type=int, default=3,
                    help='number of threads for data loading')
parser.add_argument('--cpu', action='store_true',
                    help='use cpu only')
parser.add_argument('--n_GPUs', type=int, default=1,
                    help='number of GPUs')
parser.add_argument('--seed', type=int, default=1,
                    help='random seed')

# Data specifications
parser.add_argument('--dir_data', type=str, default='/home/yulun/data/SR/traindata/DIV2K/bicubic',
                    help='dataset directory')
parser.add_argument('--dir_demo', type=str, default='../test',
                    help='demo image directory')
parser.add_argument('--data_train', type=str, default='DIV2K',
                    help='train dataset name')
parser.add_argument('--data_test', type=str, default='DIV2K',
                    help='test dataset name')
parser.add_argument('--benchmark_noise', action='store_true',
                    help='use noisy benchmark sets')
parser.add_argument('--n_train', type=int, default=800,
                    help='number of training set')
parser.add_argument('--n_val', type=int, default=5,
                    help='number of validation set')
parser.add_argument('--offset_val', type=int, default=800,
                    help='validation index offest')
parser.add_argument('--ext', type=str, default='sep_reset',
                    help='dataset file extension')
parser.add_argument('--scale', default='4',
                    help='super resolution scale')
parser.add_argument('--patch_size', type=int, default=192,
                    help='output patch size')
parser.add_argument('--rgb_range', type=int, default=255,
                    help='maximum value of RGB')
parser.add_argument('--n_colors', type=int, default=3,
                    help='number of color channels to use')
parser.add_argument('--noise', type=str, default='.',
                    help='Gaussian noise std.')
parser.add_argument('--chop', action='store_true',
                    help='enable memory-efficient forward')

# Model specifications
parser.add_argument('--model', default='RCAN',
                    help='model name')

parser.add_argument('--act', type=str, default='relu',
                    help='activation function')
parser.add_argument('--pre_train', type=str, default='.',
                    help='pre-trained model directory')
parser.add_argument('--extend', type=str, default='.',
                    help='pre-trained model directory')
parser.add_argument('--n_resblocks', type=int, default=20,
                    help='number of residual blocks')
parser.add_argument('--n_feats', type=int, default=64,
                    help='number of feature maps')
parser.add_argument('--res_scale', type=float, default=1,
                    help='residual scaling')
parser.add_argument('--shift_mean', default=True,
                    help='subtract pixel mean from the input')
parser.add_argument('--precision', type=str, default='single',
                    choices=('single', 'half'),
                    help='FP precision for test (single | half)')

# Training specifications
parser.add_argument('--reset', action='store_true',
                    help='reset the training')
parser.add_argument('--test_every', type=int, default=1000,
                    help='do test per every N batches')
parser.add_argument('--epochs', type=int, default=1000,
                    help='number of epochs to train')
parser.add_argument('--batch_size', type=int, default=16,
                    help='input batch size for training')
parser.add_argument('--split_batch', type=int, default=1,
                    help='split the batch into smaller chunks')
parser.add_argument('--self_ensemble', action='store_true',
                    help='use self-ensemble method for test')
parser.add_argument('--test_only', action='store_true',
                    help='set this option to test the model')
parser.add_argument('--gan_k', type=int, default=1,
                    help='k value for adversarial loss')

# Optimization specifications
parser.add_argument('--lr', type=float, default=1e-4,
                    help='learning rate')
parser.add_argument('--lr_decay', type=int, default=200,
                    help='learning rate decay per N epochs')
parser.add_argument('--decay_type', type=str, default='step',
                    help='learning rate decay type')
parser.add_argument('--gamma', type=float, default=0.5,
                    help='learning rate decay factor for step decay')
parser.add_argument('--optimizer', default='ADAM',
                    choices=('SGD', 'ADAM', 'RMSprop'),
                    help='optimizer to use (SGD | ADAM | RMSprop)')
parser.add_argument('--momentum', type=float, default=0.9,
                    help='SGD momentum')
parser.add_argument('--beta1', type=float, default=0.9,
                    help='ADAM beta1')
parser.add_argument('--beta2', type=float, default=0.999,
                    help='ADAM beta2')
parser.add_argument('--epsilon', type=float, default=1e-8,
                    help='ADAM epsilon for numerical stability')
parser.add_argument('--weight_decay', type=float, default=0,
                    help='weight decay')

# Loss specifications
parser.add_argument('--loss', type=str, default='1*L1',
                    help='loss function configuration')
parser.add_argument('--skip_threshold', type=float, default='1e6',
                    help='skipping batch that has large error')

# Log specifications
parser.add_argument('--save', type=str, default='test',
                    help='file name to save')
parser.add_argument('--load', type=str, default='.',
                    help='file name to load')
parser.add_argument('--resume', type=int, default=0,
                    help='resume from specific checkpoint')
parser.add_argument('--print_model', action='store_true',
                    help='print model')
parser.add_argument('--save_models', action='store_true',
                    help='save all intermediate models')
parser.add_argument('--print_every', type=int, default=100,
                    help='how many batches to wait before logging training status')
parser.add_argument('--save_results', action='store_true',
                    help='save output results')

# options for residual group and feature channel reduction
parser.add_argument('--n_resgroups', type=int, default=10,
                    help='number of residual groups')
parser.add_argument('--reduction', type=int, default=16,
                    help='number of feature maps reduction')
# options for test
parser.add_argument('--testpath', type=str, default='../test/DIV2K_val_LR_our',
                    help='dataset directory for testing')
parser.add_argument('--testset', type=str, default='Set5',
                    help='dataset name for testing')

args = parser.parse_args()
template.set_template(args)

args.scale = list(map(lambda x: int(x), args.scale.split('+')))

if args.epochs == 0:
    args.epochs = 1e8

for arg in vars(args):
    if vars(args)[arg] == 'True':
        vars(args)[arg] = True
    elif vars(args)[arg] == 'False':
        vars(args)[arg] = False

template.py 

def set_template(args):
    # Set the templates here
    if args.template.find('jpeg') >= 0:
        args.data_train = 'DIV2K_jpeg'
        args.data_test = 'DIV2K_jpeg'
        args.epochs = 200
        args.lr_decay = 100

    if args.template.find('EDSR_paper') >= 0:
        args.model = 'EDSR'
        args.n_resblocks = 32
        args.n_feats = 256
        args.res_scale = 0.1

    if args.template.find('MDSR') >= 0:
        args.model = 'MDSR'
        args.patch_size = 48
        args.epochs = 650

    if args.template.find('DDBPN') >= 0:
        args.model = 'DDBPN'
        args.patch_size = 128
        args.scale = '4'

        args.data_test = 'Set5'

        args.batch_size = 20
        args.epochs = 1000
        args.lr_decay = 500
        args.gamma = 0.1
        args.weight_decay = 1e-4

        args.loss = '1*MSE'

    if args.template.find('GAN') >= 0:
        args.epochs = 200
        args.lr = 5e-5
        args.lr_decay = 150

 utility.py

import os
import math
import time
import datetime
from functools import reduce

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

import numpy as np
import scipy.misc as misc

import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lrs

class timer():
    def __init__(self):
        self.acc = 0
        self.tic()

    def tic(self):
        self.t0 = time.time()

    def toc(self):
        return time.time() - self.t0

    def hold(self):
        self.acc += self.toc()

    def release(self):
        ret = self.acc
        self.acc = 0

        return ret

    def reset(self):
        self.acc = 0

class checkpoint():
    def __init__(self, args):
        self.args = args
        self.ok = True
        self.log = torch.Tensor()
        now = datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S')

        if args.load == '.':
            if args.save == '.': args.save = now
            self.dir = '../experiment/' + args.save
        else:
            self.dir = '../experiment/' + args.load
            if not os.path.exists(self.dir):
                args.load = '.'
            else:
                self.log = torch.load(self.dir + '/psnr_log.pt')
                print('Continue from epoch {}...'.format(len(self.log)))

        if args.reset:
            os.system('rm -rf ' + self.dir)
            args.load = '.'

        def _make_dir(path):
            if not os.path.exists(path): os.makedirs(path)

        _make_dir(self.dir)
        _make_dir(self.dir + '/model')
        _make_dir(self.dir + '/results')

        open_type = 'a' if os.path.exists(self.dir + '/log.txt') else 'w'
        self.log_file = open(self.dir + '/log.txt', open_type)
        with open(self.dir + '/config.txt', open_type) as f:
            f.write(now + '\n\n')
            for arg in vars(args):
                f.write('{}: {}\n'.format(arg, getattr(args, arg)))
            f.write('\n')

    def save(self, trainer, epoch, is_best=False):
        trainer.model.save(self.dir, epoch, is_best=is_best)
        trainer.loss.save(self.dir)
        trainer.loss.plot_loss(self.dir, epoch)

        self.plot_psnr(epoch)
        torch.save(self.log, os.path.join(self.dir, 'psnr_log.pt'))
        torch.save(
            trainer.optimizer.state_dict(),
            os.path.join(self.dir, 'optimizer.pt')
        )

    def add_log(self, log):
        self.log = torch.cat([self.log, log])

    def write_log(self, log, refresh=False):
        print(log)
        self.log_file.write(log + '\n')
        if refresh:
            self.log_file.close()
            self.log_file = open(self.dir + '/log.txt', 'a')

    def done(self):
        self.log_file.close()

    def plot_psnr(self, epoch):
        axis = np.linspace(1, epoch, epoch)
        label = 'SR on {}'.format(self.args.data_test)
        fig = plt.figure()
        plt.title(label)
        for idx_scale, scale in enumerate(self.args.scale):
            plt.plot(
                axis,
                self.log[:, idx_scale].numpy(),
                label='Scale {}'.format(scale)
            )
        plt.legend()
        plt.xlabel('Epochs')
        plt.ylabel('PSNR')
        plt.grid(True)
        plt.savefig('{}/test_{}.pdf'.format(self.dir, self.args.data_test))
        plt.close(fig)

    def save_results(self, filename, save_list, scale):
        filename = '{}/results/{}_x{}_'.format(self.dir, filename, scale)
        postfix = ('SR', 'LR', 'HR')
        for v, p in zip(save_list, postfix):
            normalized = v[0].data.mul(255 / self.args.rgb_range)
            ndarr = normalized.byte().permute(1, 2, 0).cpu().numpy()
            misc.imsave('{}{}.png'.format(filename, p), ndarr)

def quantize(img, rgb_range):
    pixel_range = 255 / rgb_range
    return img.mul(pixel_range).clamp(0, 255).round().div(pixel_range)

def calc_psnr(sr, hr, scale, rgb_range, benchmark=False):
    diff = (sr - hr).data.div(rgb_range)
    shave = scale
    if diff.size(1) > 1:
        convert = diff.new(1, 3, 1, 1)
        convert[0, 0, 0, 0] = 65.738
        convert[0, 1, 0, 0] = 129.057
        convert[0, 2, 0, 0] = 25.064
        diff.mul_(convert).div_(256)
        diff = diff.sum(dim=1, keepdim=True)
    '''
    if benchmark:
        shave = scale
        if diff.size(1) > 1:
            convert = diff.new(1, 3, 1, 1)
            convert[0, 0, 0, 0] = 65.738
            convert[0, 1, 0, 0] = 129.057
            convert[0, 2, 0, 0] = 25.064
            diff.mul_(convert).div_(256)
            diff = diff.sum(dim=1, keepdim=True)
    else:
        shave = scale + 6
    '''
    valid = diff[:, :, shave:-shave, shave:-shave]
    mse = valid.pow(2).mean()

    return -10 * math.log10(mse)

def make_optimizer(args, my_model):
    trainable = filter(lambda x: x.requires_grad, my_model.parameters())

    if args.optimizer == 'SGD':
        optimizer_function = optim.SGD
        kwargs = {'momentum': args.momentum}
    elif args.optimizer == 'ADAM':
        optimizer_function = optim.Adam
        kwargs = {
            'betas': (args.beta1, args.beta2),
            'eps': args.epsilon
        }
    elif args.optimizer == 'RMSprop':
        optimizer_function = optim.RMSprop
        kwargs = {'eps': args.epsilon}

    kwargs['lr'] = args.lr
    kwargs['weight_decay'] = args.weight_decay
    
    return optimizer_function(trainable, **kwargs)

def make_scheduler(args, my_optimizer):
    if args.decay_type == 'step':
        scheduler = lrs.StepLR(
            my_optimizer,
            step_size=args.lr_decay,
            gamma=args.gamma
        )
    elif args.decay_type.find('step') >= 0:
        milestones = args.decay_type.split('_')
        milestones.pop(0)
        milestones = list(map(lambda x: int(x), milestones))
        scheduler = lrs.MultiStepLR(
            my_optimizer,
            milestones=milestones,
            gamma=args.gamma
        )

    return scheduler

 trainer.py

import os
import math
from decimal import Decimal

import utility

import torch
from torch.autograd import Variable
from tqdm import tqdm

class Trainer():
    def __init__(self, args, loader, my_model, my_loss, ckp):
        self.args = args
        self.scale = args.scale

        self.ckp = ckp
        self.loader_train = loader.loader_train
        self.loader_test = loader.loader_test
        self.model = my_model
        self.loss = my_loss
        self.optimizer = utility.make_optimizer(args, self.model)
        self.scheduler = utility.make_scheduler(args, self.optimizer)

        if self.args.load != '.':
            self.optimizer.load_state_dict(
                torch.load(os.path.join(ckp.dir, 'optimizer.pt'))
            )
            for _ in range(len(ckp.log)): self.scheduler.step()

        self.error_last = 1e8

    def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare([lr, hr])
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)
            if loss.item() < self.args.skip_threshold * self.error_last:
                loss.backward()
                self.optimizer.step()
            else:
                print('Skip this batch {}! (Loss: {})'.format(
                    batch + 1, loss.item()
                ))

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1]

    def test(self):
        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(torch.zeros(1, len(self.scale)))
        self.model.eval()

        timer_test = utility.timer()
        with torch.no_grad():
            for idx_scale, scale in enumerate(self.scale):
                eval_acc = 0
                self.loader_test.dataset.set_scale(idx_scale)
                tqdm_test = tqdm(self.loader_test, ncols=80)
                for idx_img, (lr, hr, filename, _) in enumerate(tqdm_test):
                    filename = filename[0]
                    no_eval = (hr.nelement() == 1)
                    if not no_eval:
                        lr, hr = self.prepare([lr, hr])
                    else:
                        lr = self.prepare([lr])[0]

                    sr = self.model(lr, idx_scale)
                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    if not no_eval:
                        eval_acc += utility.calc_psnr(
                            sr, hr, scale, self.args.rgb_range,
                            benchmark=self.loader_test.dataset.benchmark
                        )
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(filename, save_list, scale)

                self.ckp.log[-1, idx_scale] = eval_acc / len(self.loader_test)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        self.args.data_test,
                        scale,
                        self.ckp.log[-1, idx_scale],
                        best[0][idx_scale],
                        best[1][idx_scale] + 1
                    )
                )

        self.ckp.write_log(
            'Total time: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch))

    def prepare(self, l, volatile=False):
        device = torch.device('cpu' if self.args.cpu else 'cuda')
        def _prepare(tensor):
            if self.args.precision == 'half': tensor = tensor.half()
            return tensor.to(device)
           
        return [_prepare(_l) for _l in l]

    def terminate(self):
        if self.args.test_only:
            self.test()
            return True
        else:
            epoch = self.scheduler.last_epoch + 1
            return epoch >= self.args.epochs

三.测试网络

利用模型将图片四倍放大的结果如下:

输入图片:

    

输出图片:

  

输入图片:

  

输出图片:

  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1531885.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python文件处理---os模块、pathlib模块、open()函数

Python 文件处理是一个核心编程概念&#xff0c;涉及到文件的读取、写入、创建、删除以及管理文件路径等操作&#xff0c;让我们循序渐进的一起探究吧 目录 一、open()函数 1、打开文件 2、读取文件 使用 .read() 方法 使用 .readline() 方法 使用 .readlines() 方法 3…

c/c++ 深拷贝和浅拷贝

深拷贝与浅拷贝 深拷贝&#xff08;Deep Copy&#xff09;和浅拷贝&#xff08;Shallow Copy&#xff09;是对象复制的两种不同方式&#xff0c;它们涉及到对象成员数据的复制方式和内存管理。 浅拷贝&#xff08;Shallow Copy&#xff09;&#xff1a; 浅拷贝是指将一个对象的…

移动端滚轮插件mobile-select.js的使用记录

#小李子9479# 把文件下载放到static/mobile-select里面&#xff0c;如下图 分别引入js和css。 注意&#xff1a;一定要在页面加载完成后就初始化这个组件 &#xff0c;否则的话&#xff0c;第一次点击无效。

国内外主流智能驾驶芯片企业和技术介绍

英伟达依托积累多年的图形计算处理能力、GPU计算经验&#xff0c;布局智能驾驶芯片。 英伟达是全球最大的智能计算平台型公司&#xff0c;早期专注 PC 图形计算&#xff0c;后重点布局AI 领域&#xff0c;并在独立显卡、GPU等领域卓有成就。公司2006 年开发了基于 GPU 的「CUD…

算法沉淀——贪心算法五(leetcode真题剖析)

算法沉淀——贪心算法五 01.跳跃游戏 II02.跳跃游戏03.加油站04.单调递增的数字 01.跳跃游戏 II 题目链接&#xff1a;https://leetcode.cn/problems/jump-game-ii/ 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转…

AIGC——ComfyUI工作流搭建、导入与常用工作流下载

工作流 ComfyUI工作流是一个基于图形节点编辑器的工作流程&#xff0c;通过拖拽各种节点到画布上&#xff0c;连接节点之间的关系&#xff0c;构建从加载模型到生成图像的流程。每个节点代表一个与Stable Diffusion相关的模型或功能&#xff0c;节点之间通过连线传递图片信息。…

支小蜜校园防欺凌系统可以在厕所使用吗?

随着社会的进步和教育理念的更新&#xff0c;校园安全问题日益受到社会各界的关注。近年来&#xff0c;校园欺凌事件频发&#xff0c;给受害者的身心健康带来了严重影响&#xff0c;也给整个校园环境的和谐稳定带来了威胁。为此&#xff0c;许多学校开始引入校园防欺凌系统&…

详细分析Python模块中的雪花算法(附模板)

目录 前言1. 基本知识2. 模板3. Demo 前言 分布式ID的生成推荐阅读&#xff1a;分布式ID生成方法的超详细分析&#xff08;全&#xff09; 1. 基本知识 Snowflake 算法是一种用于生成全局唯一 ID 的分布式算法&#xff0c;最初由 Twitter 设计并开源 它被设计用于解决分布式…

设计模式|工厂模式

文章目录 1. 工厂模式的三种实现2. 简单工厂模式和工厂方法模式示例3. 抽象工厂模式示例4. 工厂模式与多态的关系5. 工程模式与策略模式的关系6. 面试中可能遇到的问题6.1 **工厂模式的概念是什么&#xff1f;**6.2 **工厂模式解决了什么问题&#xff1f;**6.3 **工厂模式的优点…

C++ 模板入门详解

目录 0. 模板引入 1.函数模板 1. 函数重载的缺点 2. 函数模板的概念和格式 2. 函数模板的实例化 2.1 隐式实例化&#xff1a;让编译器根据实参推演模板参数的实际类型 2.2 显式实例化&#xff1a;在函数名后的<>中指定模板参数的实际类型 2.3 函数模板参数的匹…

蓝桥杯刷题-替换字符

代码&#xff1a; 顺着题目意思写即可 sinput() nint(input()) for i in range(n):l, r, x, y input().split() if x not in s[int(l)-1:int(r)]: # 如果待替换字符不在区间内则跳过continueelse:# 找到待替换字符的位置&#xff0c;用replace函数进行替换ss[:int(l)-1]s[in…

Linux-docker安装数据库mysql

1、拉去mysql镜像&#xff1a; docker pull mysql2、创建容器挂载路径 mkdir -p /usr/local/jiuxiang/mysql/data # 数据存储位置 mkdir -p /usr/local/jiuxiang/mysql/logs # 日志存储位置 mkdir -p /usr/local/jiuxiang/mysql/conf # 配置文件3、启动容器 docker run -…

STL第一弹

2 STL初识 2.1 STL的诞生 长久以来&#xff0c;软件界一直希望建立一种可重复利用的东西 C的面向对象和泛型编程思想&#xff0c;目的就是复用性的提升 大多情况下&#xff0c;数据结构和算法都未能有一套标准,导致被迫从事大量重复工作为了建立数据结构和算法的一套标准,诞生…

MySQL的基本操作与增删改查管理操作

一、MySQL数据库sql语句 1.1 sql 命令 database数据库table表row行column列user用户select从数据表中获取数据updata更新数据库中的数据delete从数据库中删除数据insert into 向数据表插入数据create database创建新数据库alter database修改数据库create table创建新表alter…

蓝桥杯 2023 省B 飞机降落

首先&#xff0c;这题要求的数据量比较少&#xff0c;我们可以考虑考虑暴力解法。 这题可能难在很多情况的考虑&#xff0c;比如说&#xff1a; 现在时间是10&#xff0c;有个飞机20才到&#xff0c;我们是可以干等10分钟。 #include <iostream> #include <…

【机器学习300问】39、高斯分布模型如何实现异常检测?

一、异常检测是什么&#xff1f; &#xff08;1&#xff09;举几个例子 ① 信用卡交易异常检测 在信用卡交易数据分析中&#xff0c;如果某个用户的消费习惯通常是小额且本地化消费&#xff0c;那么突然出现一笔大额且跨国的交易就可能被标记为异常。 ② 电机温度异常检测 在电…

echart trigger 为 axis 的时候不显示 tooltip 解决办法

echart trigger 为 axis 的时候不显示 tooltip 解决办法 在项目 vitetsvue3 中使用 echart 显示了一个曲线图&#xff1a; 但当把图表的 trigger 设置成 axis 的时候&#xff0c;鼠标扫过并不显示具体的数值&#xff0c;如上图所示。 但 trigger item 的时候是正常的。 解决…

Docker Desktop 安装 ClickHouse 超级简单教程

Docker desktop 安装 clickhouse 超级简单 文章目录 Docker desktop 安装 clickhouse 超级简单 什么是 Docker &#xff1f;安装下准备安装Docker配置安装 ClickHouse配置数据库密码DBeaver 测试创建表总结 什么是 Docker &#xff1f; 下载 Docker desktop Docker Desktop …

[蓝桥杯 2015 省 B] 生命之树

水一水的入门树形DP #include<iostream> #include<algorithm> #include<vector> using namespace std; using ll long long; #define int long long const int N 2e610; const int inf 0x3f3f3f3f; const int mod 1e97;int n; int w[N]; vector<vecto…

Node.js快速入门:搭建基础Web服务器与实现CRUD及登录功能

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…