大模型主流微调训练方法总结 LoRA、Adapter、Prefix-tuning、P-tuning、Prompt-tuning 并训练自己的数据集

news2025/1/10 3:39:12

大模型主流微调训练方法总结

LoRA、Adapter、Prefix-tuning、P-tuning、Prompt-tuning

概述

大模型微调(finetuning)以适应特定任务是一个复杂且计算密集型的过程。本文训练测试主要是基于主流的的微调方法:LoRA、Adapter、Prefix-tuning、P-tuning和Prompt-tuning,并对它们进行总结。
LoRA (Learned Representations for Finetuning)
LoRA是一种新型的微调方法,旨在解决预训练模型微调过程中存在的两大问题,模型调整过程中对初始模型过度依赖以及微调过程中存在的过拟合问题。LoRA通过在预训练模型中引入一个额外的线性层,并使用特定任务的训练数据来微调这个线性层。这种方法使模型能够更好地适应特定任务,同时减少了对初始模型的过度依赖。
Adapter
Adapter是一种简单而有效的微调方法,它通过在预训练模型的特定层上添加一个可学习的附加层来适应特定任务。这个附加层可以是线性层、非线性层或其他类型的层,其目的是对预训练模型的输出进行微调,使其更好地适应特定任务。Adapter具有较低的计算成本和较好的性能,使其成为处理小数据集的理想选择。
Prefix-tuning
Prefix-tuning方法通过微调预训练模型的特定部分(称为“前缀”)以适应特定任务。这种方法只微调前缀,而不是整个模型,从而减少了计算成本和过拟合的风险。Prefix-tuning的性能通常优于传统的微调方法,但不及完整的模型微调。
P-tuning
P-tuning是一种改进的微调方法,通过引入一个参数化转换矩阵来调整预训练模型的权重。这个矩阵可以学习地改变预训练模型的权重分布,使其更好地适应特定任务。P-tuning在保持良好性能的同时,减少了微调过程中对初始模型的过度依赖。
Prompt-tuning
Prompt-tuning是一种新颖的微调方法,利用了近年来自然语言处理领域的prompting技术。该方法通过修改预训练模型的输入来适应特定任务,使其在输入阶段就考虑到任务的特定需求。Prompt-tuning可以显著提高模型的性能,同时减少了对初始模型的过度依赖和过拟合的风险。

总结:

这五种微调方法在处理大型预训练模型以适应特定任务方面都具有各自的优点和适用场景。LoRA通过引入额外的线性层来减少对初始模型的过度依赖和过拟合问题;Adapter具有较低的计算成本和较好的性能,适用于小数据集;Prefix-tuning只微调预训练模型的前缀,减少了计算成本和过拟合的风险;P-tuning通过引入参数化转换矩阵来调整预训练模型的权重,减少了过度依赖;Prompt-tuning利用prompting技术修改预训练模型的输入,显著提高性能并减少过度依赖和过拟合的风险。在实际应用中,应根据具体任务和数据集选择合适的微调方法。

详述

在这里插入图片描述

LoRA

paper:(https://arxiv.org/pdf/2106.09685.pdf)

简介:

自然语言处理目前存在一个重要范式:一般领域数据的大规模预训练,对特定任务或领域的适应(finetune)。但是随着预训练语言模型越来越大,这个范式存在以下问题:
● 当我们finetune大模型时,由于训练成本太高,不太可能重新训练所有模型参数
● 以前的方法(论文发表于2021年)都或多或少有其它性能问题,如adapter增加了模型层数,引入了额外的推理延迟;prefix-tuning比较难训练,效果不如直接finetune。
基于上述背景,论文作者得益于前人的一些关于内在维度(intrinsic dimension)的发现:模型是过参数化的,它们有更小的内在维度,模型主要依赖于这个低的内在维度(low intrinsic dimension)去做任务适配。假设模型在任务适配过程中权重的改变量是低秩(low rank)的,由此提出低秩自适应(LoRA)方法,LoRA通过优化适应过程中密集层变化的秩分解矩阵来间接训练神经网络中的一些密集层,同时保持预先训练的权重不变。

方法

LoRA的实现思想很简单,如下图所示,就是冻结一个预训练模型的矩阵参数,并选择用A和B矩阵来替代,在下游任务时只更新A和B。

在这里插入图片描述
结合图片来看,LoRA的实现流程如下:
● 在原始预训练语言模型(PLM)旁边增加一个旁路,做一个降维再升维的操作,来模拟所谓的内在秩。
● 训练的时候固定PLM的参数,只训练降维矩阵A与升维矩阵B。
● 模型的输入输出维度不变,输出时将BA与PLM的参数叠加。
● 用随机高斯分布初始化A,用0矩阵初始化B,保证训练的开始此旁路矩阵依然是0矩阵。

实现

从公式上解释LoRA的实现。假设要在下游任务微调一个预训练语言模型(如GPT3),则需要更新预训练模型参数,公式表示如下:
W0是预训练模型初始化的参数,ΔW就是需要更新的参数。如果是全参数微调,则它的参数量=W0参数量(如果是GPT3,则ΔW≈175B)。从这可以看出要全参数微调大语言模型,没有超级好的显卡群是没法实现的。
由于前人的工作发现预训练的语言模型具有较低的“内部维度(intrinsic dimension)”,在任务适配过程中,即使随机投影到较小的子空间,仍然可以有效地学习。因此,LoRA做的就是增加小参数模块去学习改变量ΔW。

在这里插入图片描述

在训练过程中,W0是固定不变的,只有A和B包含训练参数,是变化的。而在推理的过程中,只需要把改变量放回原模型,就不会有任何延迟。如果想切换任务,只需要切换任务的过程中,减去BA,然后换上用其它任务训练好的BʹAʹ就可以了。

总结

基于大模型的内在低秩特性,增加旁路矩阵来模拟full finetuning,LoRA是一个能达成lightweight finetuning的简单有效的方案。目前该技术已经广泛应用于大模型的微调,如Alpaca,stable diffusion+LoRA,而且能和其它参数高效微调方法有效结合

2. Adapter

paper:(https://arxiv.org/pdf/1902.00751.pdf)

简介

2019年,Houlsby N等人将Adapter引入NLP领域,作为全模型微调的一种替代方案。

方法

Adapter主体架构下图所示。
在这里插入图片描述
AdapterFusion将学习过程分为两个阶段:
● 1.「知识提取阶段」:训练Adapter模块学习下游任务的特定知识,将知识封装在Adapter模块参数中。
● 2.「知识组合阶段」:将预训练模型参数与特定于任务的Adapter参数固定,引入新参数学习组合多个Adapter中的知识,提高模型在目标任务中的表现。

实现

其中对于N的不同的下游任务训练N个Adapter模块。然后使用AdapterFusion组合N个适配器中的知识,将预训练参数Θ和全部的Adapter参数Φ固定,引入新的参数Ψ,使用N个下游任务的数据集训练,让AdapterFusion学习如何组合N个适配器解决特定任务。参数Ψ在每一层中包含Key、Value和Query(上图右侧架构所示)。
在Transformer每一层中将前馈网络子层的输出作为Query,Value和Key的输入是各自适配器的输出,将Query和Key做点积传入SoftMax函数中,根据上下文学习对适配器进行加权。在给定的上下文中,AdapterFusion学习经过训练的适配器的参数混合,根据给定的输入识别和激活最有用的适配器。「作者通过将适配器的训练分为知识提取和知识组合两部分,解决了灾难性遗忘、任务间干扰和训练不稳定的问题。Adapter模块的添加也导致模型整体参数量的增加,降低了模型推理时的性能」。

总结

Adapter Fusion 在 Adapter 的基础上进行优化,通过将学习过程分为两阶段来提升下游任务表现。作者对全模型微调(Full)、Adapter、AdapterFusion三种方法在各个数据集上进行和对比试验。AdapterFusion在大多数情况下性能优于全模型微调和Adapter,特别在MRPC(相似性和释义任务数据集)与RTE(识别文本蕴含数据集)中性能显著优于另外两种方法

3. Prefix-tuning

Paper:(https://arxiv.org/pdf/2101.00190.pdf)

简介

前缀微调(prefix-tunning),用于生成任

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1531845.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络原理(3)——TCP协议

目录 一、连接管理 二、三次握手 1、何为三次握手? 2、三次握手有何意义? 三、四次挥手 三次握手和四次挥手的相似之处和不同之处 (1)相似之处 (2)不同之处 四、TCP的状态 建立连接: 断开…

Matlab中inv()函数的使用

在Matlab中,inv()函数是用来求解矩阵的逆矩阵的函数。逆矩阵是一个与原矩阵相乘后得到单位矩阵的矩阵。在数学中,矩阵A的逆矩阵通常用A^-1表示。 什么是逆矩阵 在数学中,对于一个n阶方阵A,如果存在一个n阶方阵B,使得…

华为综合案例-普通WLAN全覆盖配置(1)

适用范围和业务需求 适用范围 本案例适用于大多数场景,如办公室、普通教室、会议室等普通非高密场景。 业务需求 主要业务需求如下: 接入需求 随时、随地无线业务接入。无线覆盖需要做到覆盖均匀、无盲区。 无线漫游需求 多层网络、快速切换、网络…

P1143 进制转换题解

题目 请你编一程序实现两种不同进制之间的数据转换。 输入输出格式 输入格式 共三行,第一行是一个正整数,表示需要转换的数的进制n (2≤n≤16),第二行是一个n进制数,若n>10则用大写字母A∼F表示数码10∼15,并且…

使用 GTSAM 进行曲线拟合的示例

GTSAM介绍 GTSAM(通用因子图优化库)是一种用于状态估计和传感器数据融合的开源C++库。它提供了强大的工具,用于在机器人和自主系统领域进行感知、决策和控制。 功能和特点 状态估计与优化: GTSAM 提供了灵活且高效的状态估计框架,能够处理从传感器获取的数据,并…

接口测试系列 —— 转转交易业务场景接口测试实践

01 Why接口测试 一、提高效率 关键词:QA 职责保质保量的完成需求测试工作在保证质量的前提下提高效率,要保证质量,首先需要先弄清楚这次需求的测试范围,针对性的使用不同的测试方法,而接口测试就是其中的一种&#x…

JMeter 并发测试和持续性压测详解

并发测试和持续性压测都是评估系统性能的常用方法,它们可以帮助开发人员发现并解决系统中的性能问题。本文来详细介绍下。 概念 并发测试: 旨在评估系统在同时处理多个用户请求时的性能。在这种 测试 中,系统会暴露于一定数量的用户负载下&…

Bito插件

此文档只作用于指导性工作,更多资料请自行探索。 1、插件安装与介绍 1.1 插件下载与安装 在idea中搜索:Bito Bito is also available for:​编辑VSCode​编辑JetBrains​编辑CLI 1.2 官方介绍 插件:ChatGPT GPT-4 - Bito AI Code Assista…

SQLiteC/C++接口详细介绍sqlite3_stmt类(五)

返回:SQLite—系列文章目录 上一篇:SQLiteC/C接口详细介绍sqlite3_stmt类(四)- 下一篇: 无 12. sqlite3_bind_text16函数 sqlite3_bind_text16函数用于将UTF-16编码的文本数据(字符串)绑定…

推荐一款管理hosts文件的利器

程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一份大厂面试资料《史上最全大厂面试题》,Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

windows下不同python版本切换

一、简介 有时候在windows环境下会安装很多个不同的Python版本,但是在运行一些特定环境时,又需要特定的python版本。于是就需要切换Python版本。 二、实操 右键“我的电脑”-》属性 右侧“高级系统设置” “高级”-》“环境变量” 双击“Path” 可以看到…

计算机视觉之三维重建(2)---摄像机标定

文章目录 一、回顾线代1.1 线性方程组的解1.2 齐次线性方程组的解 二、透镜摄像机的标定2.1 标定过程2.2 提取摄像机参数2.3 参数总结 三、径向畸变的摄像机标定3.1 建模3.2 求解 四、变换4.1 2D平面上的欧式变换4.2 2D平面上的相似变换和仿射变换4.3 2D平面上的透射变换4.4 3D…

深入浅出前端本地储存(1)

引言 2021 年,如果你的前端应用,需要在浏览器上保存数据,有三个主流方案: CookieWeb Storage (LocalStorage)IndexedDB 这些方案就是如今应用最广、浏览器兼容性最高的三种前端储存方案 今天这篇文章就聊一聊这三种方案的历史…

全球首例AI软件工程师Devin:Cognition AI引领智能编程新纪元

近日,初创企业Cognition AI震撼发布了全球首位AI软件工程师——Devin,这一开创性的突破标志着人工智能在编程与软件开发领域的应用迈上了全新的台阶。Devin以其卓越的计算机推理与规划能力,正在重新定义我们对软件工程实践的理解。 Devin&am…

软件设计师:03 - 数据库系统

一、数据模型的分类 1.1、概念数据模型 1.2、结构数据模型 1.3 真题 二、三级模式 概念模式对应的是基本表,概念模式也称为模式 外模式对应的是视图,也称用户模式或者子模式 内模式对应的是数据库里面的存储文件,也称存储模式 真题 三、两级…

漏洞发现-漏扫项目篇Poc开发Yaml语法反链判断不回显检测Yaml生成

知识点 1、Xray&Afrog-Poc开发-环境配置&编写流程 2、Xray-Poc开发-数据回显&RCE不回显&实验室 3、Afrog-Poc开发-数据回显&RCE不回显&JDNI注入 章节点: 漏洞发现-Web&框架组件&中间件&APP&小程序&系统 扫描项目-综合…

三连杆滑块机构运动学仿真 | 【Matlab源码+理论公式文本】|曲柄滑块 | 曲柄连杆 | 机械连杆

【程序简介】💻🔍 本程序通过matlab实现了三连杆滑块机构的运动学仿真编程,动态展现了三连杆机构的运动动画,同时给出了角位移、角速度和角加速度的时程曲线,除了程序本身,还提供了机构运动学公式推导文档…

防火墙互联技术

1.防火墙基础配置 2.配置防火墙远程管理 3.配置防火墙管理员角色 4.配置防火墙系统时钟 抓包

自动化测试报告生成(Allure)

🍅 视频学习:文末有免费的配套视频可观看 🍅 关注公众号【互联网杂货铺】,回复 1 ,免费获取软件测试全套资料,资料在手,涨薪更快 之前尝试使用过testNG自带的测试报告、优化过reportNG的测试报告…

备战蓝桥杯D33 - 真题 - 松散子序列

题目描述 解题思路 ps:思路是我看了大佬的题解后自己的理解,自己给自己捋清楚思路。 1.设置输入,将字符串输入 2.因为输入的是字符,但要找出字符的最大价值,所以先将字符串转化成对应的数值。 这时候就要用到ord函…