网络原理(3)——TCP协议

news2025/1/10 3:53:46

目录

一、连接管理

二、三次握手

        1、何为三次握手?

        2、三次握手有何意义?

三、四次挥手

三次握手和四次挥手的相似之处和不同之处

   (1)相似之处

   (2)不同之处

四、TCP的状态

建立连接:

断开连接:

CMD控制平台观察上面介绍的状态

LISTEN和ESTABLISHED

CLOSE_WAIT和TIME_WAIT


一、连接管理

        正常情况下,TCP要经历“三次握手”建立连接,“四次挥手”断开连接。

        TCP是有连接的,我们程序员编写客户端代码时,只要:socket = new Socket(String serverIP, int serverPort)操作系统内核中就会自动和服务器建立连接,如图:

        内核是怎么完成上述建立连接的过程的呢?——三次握手

        而当要断开连接时,内核是怎么进行的呢?——四次挥手


二、三次握手

        1、何为三次握手?

        在建立连接的过程中,客户端一定是主动的一方,第一次交互就是客户端发起的,客户端首先要发送给服务器syn(同步报文段),然后服务器收到 syn 后,服务器就会发送ack(应答报文),然后服务器也要发送 syn 给客户端,客户端在收到 syn 后,就会返回一个 ack 给服务器,这是,三次握手的就完成了,如图:

        上面画的好像是四次交互啊,那为啥称为三次握手呢?原因很简单,因为服务器给客户端发送的两个报文,可以合并成一个也就是ack+syn。为什么呢?想象一下,我们网购的时候,同时买了两份商品,商家是不是就会把这两份商品打包成一件商品,一起邮寄给我们,原因很简单,就是节省成本。网络中也是如此,反正ack和syn都要发到客户端中,那为什么不直接打包成一份呢?何况网络传输是要经过层层封装、分用,多一个次传输,传输成本就会增加好多,也就成了三次握手,如下图:

        除了节约成本外,还有一个原因(也是能合并的前提):ack和syn的触发时机是一样的,所以可以把这两个合并在一起。所以100%会合并

        这里客户端在第一次交互中,虽然已经发送给服务器syn了,但是服务器是否要保存客户端的信息,还得观望观望,等这三次握手结束后,才能保存客户端的信息,确立连接,以及后续的通信。

        这里的第一次交互,服务器收到客户端发来的syn,服务器会有两种情况:一、服务器同意,表示服务器也愿意和客户端建立连接二、务器不同意,这种情况很少出现,一般的原因就是服务器的负载极高,已经处理不过来了,客户端发来的请求处理不过来了,服务器完全无法响应,就没有下文了。

        因为服务器是提供服务的,所以客户端发来的请求就一定会尽可能的处理,返回响应,所以一般都会同意客户端的建立请求

                握手的英译:handshake,是一个形象的比喻,握手只是打招呼,不用商讨具体的细节(业务逻辑,也就是应用程序 / 应用层要完成的事情)。其中这里就是简单的建立个连接而已,没有其他操作,还有三次握手也会有超时重传,三次握手结束后,超时重传也还存在。

syn的介绍:所谓的syn就是一个特殊的TCP数据报

        syn是六个标志位的第五位,全称:synchronize ,表示同步的意思,如图:

        表达的语义:我想和你建立连接。这里的 syn 虽然不带有应用层载荷,但也会带有 IP报头 / 以太网数据帧等等,更会有TCP报头其中TCP报头中就包含了客户端自己的端口,IP报头中就包含了客户端的IP

        2、三次握手有何意义?

(1)投石问路,确认客户端和服务器之间的通信通道是否“通畅”

        比如地铁,地铁每天的第一趟不是载客的,而是先空车跑一趟,确认列车是否能正常运行到目的地,中间是否会有故障;而三次握手也是有类似的功能,通信前先确认通信链路是否是通畅的,有一种投石问路的效果。

(2)三次握手,也是在确定通信双方是否能发送信息和接受信息(接受和发送能力是否正常)

        功能和上面画的图一样,如图:

        第一次交互,客户端先给服务器发送syn建立请求,服务器收到了syn后,就知道客户端的发送能力是没有问题的;第二次交互,服务器发送ack+syn给客户端,当客户端收到后,客户端就知道了,自己的发送能力没有问题,服务器的接受和发送能力没有问题;第三次交互,客户端发送ack给服务器,服务器收到ack,服务器就能知道,自己的发送能力和接受能力都没有问题,还有客户端的接受能力也没有问题。

(3)建立连接的过程也会协商一些参数

        因为网络通信是客户端和服务器两方的事情,所以就要配合,就要协商一些信息,保证其中的有些内容要一样。

        TCP协议中也有很多参数是要客户端和服务器双方进行协商的,这些内容往往体现在 选项中,如图

        其中有一个信息是挺关键的:TCP 的通信序号,如图:

        也是因为网络传输中:后发先至(先发后至)的情况是普遍存在的,所以要引入序号这一概念。为了区分不同连接之间的数据包。

        TCP在通信过程中,序号不是从 0 / 1开始的,而是选择一个比较大的数字,以这个数字开头来计算,即使是同一个客户端和服务器,每次连接,开始的序号都不同,原因:避免“前朝的件,斩本朝的官”。啥意思,如图:

        所以,第二次连接,旧的数据应该丢弃。而旧的数据包也能一眼就看出来,原因就是每次连接(就算是同一客户端和服务器的连接),每次开始的序号也会不同,就很容易区别新旧数据包,把旧的数据包丢弃。

        比如清朝的人,和我们现代人走在一起,想象清朝的人是“大粽子”,是不是一眼就能看出来他“不是人”(doge)。


三、四次挥手

        连接的过程,本质是在于服务器和客户端直接能保存对端的信息,是虚拟的连接,而这些信息是要放在数据结构中的

        断开连接的过程,本质就在于把服务器和客户端里保存的对端的信息,在数据结构上给释放掉,是逻辑上的断开连接,也是虚拟的

        其中四次挥手有点类似现实中的离婚的“和离”(和平分手),因为结婚领证后是具有法律效应的,如果要离婚,就会牵扯到财产纠纷问题,并不是其中的一方想离就立即能离的,一般要确认财产分配问题,双方的观念达成一致,才能离成,这种情况就是“和离”;而四次挥手呢,也并不是客户端和服务器的其中一端的单方面情况,想断开连接就断开连接,而是要遵循一些约定,经过四次挥手的过程后,才能断开连接

        那么四次挥手的过程是咋样的呢?(断开连接并不像建立连接,发送端一定是客户端,断开连接的发起者,可以是服务器,也可以是客户端)大概流程如图:

        这里就涉及到四次交互,其中服务器这边,是不可以把ack和fin进行合并!!一起发送给客户端的,为什么呢,原因就是:服务器这边的ack和fin触发时机是不一样的!服务器接受到对端的fin时,就会立即发送ack给对端,而fin要经历一些程序员写的一些代码,一些逻辑后,才能执行服务器这边的代码: socket.close(),才会给对端发fin。当然也不是绝对的,如果服务器这边的如果断开连接的代码很少,fin和发送ack的触发时机几乎是同一时间,这时候服务器当然也可以把ack+fin合并到一起再发送给对端啦。所以,中间两次可以合并吗?我们称为 :如合

        上面这四次交互,就是四次挥手的过程了。

三次握手和四次挥手的相似之处和不同之处

   (1)相似之处

        传输顺序是相似的,都是各自给对端发生 syn / fin,对端返回ack,然后对端再发送 syn / fin ,   当前端再返回回去ack。

        三次握手交互顺序:syn / ack / syn / ack

        四次挥手交互顺序:fin / ack / fin /ack

   (2)不同之处

        发送方的约定不同,三次握手的发送方(主动方)必须是客户端,四次挥手的发送方双方(主动方)都可以。


四、TCP的状态

        下图是TCP状态转换的汇总:

        这里主要介绍四个常用的状态。

建立连接:

        LISTEN状态:在Linux系统是LISTEN,Windows系统是LISTENING;表示服务器这边已经创建好ServerSocket了,并且已经好绑定IP地址和端口了,随时可以接收客户端发来的请求。

        ESTABLISHED状态:表示三次握手的过程已经结束了,客户端和服务器之间已经建立好连接了。

断开连接:

        CLOSE_WAIT状态:表示被动方的这一端,收到了对端发来的fin后,会进入这个状态。

        TIME_WAIT状态:表示主动方这一端,发送给对端fin后,对端也发送fin给我后,本端会处于这个状态,就是为了给最后一个ack的重传留有一定时间。

CMD控制平台观察上面介绍的状态

首先,启动我们之前写的TCP代码,启动这服务器和客户端。

详细代码在:网络编程套接字(4)——Java套接字(TCP协议)-CSDN博客

其中服务器和客户端的端口和地址,如图:

LISTEN和ESTABLISHED

只启动服务器

        在CMD控制平台输入:netstat -ano | findstr 9090

        第一列是协议,第二列是本地地址,第三列是外部地址,第四列是状态,第五列是 PID。

        其中,这里0.0.0.0是本机所有网络接口的地址,是本网络中的本机,也就是说,表示当前设备上所有可用的IP地址,也称为通配地址而127.0.0.1是回环地址,是为了让本机能够实现自我测试和自我通信。

        方括号是IPV6的地址

        服务器的端口号是9090,也就是服务器的地址,当前状态是LISTENING,表示服务器已经绑定好了IP地址和端口,随时可以和客户端建立连接

        大概流程如下图:

启动服务器和客户端

        在CMD控制平台输入:netstat -ano | findstr 9090

        客户端是第三行,服务器是第二行,其中它们的状态都变成了ESTABLISHED表示服务器和客户端两端已经建立了联系

CLOSE_WAIT和TIME_WAIT

        在Windows操作系统,CLOSE_WAIT和TIME_WAIT是不容易被观察到的,用CMD控制平台看不到这个状态。

        其中,这里TIME_WAIT是为了给最后一个ack重传留有一定的时间。其中,最后一个ack要发送给服务器,客户端和服务器之间,在数据结构中保存的对端信息才能被释放掉,如果最后一个ack丢包了,客户端这边也不知道是啥情况,就可以使用TIME_WAIT状态进行标记,如果ack丢包了,就等一定的时间,给客户端这边重传ack提供保障。

        当然,这里也不是无休止的等,是有一定是时间限制的,最多等2MSL(MSL是一个系统内核的配置项表示服务器和客户端之间消耗最多的时间常见的设置值是2 min),这里如果等了2MSL,还没收到客户端发来的ack,也意味着客户端这边不可能会发ack过来了,再也不会重传了,就直接断开连接吧,丢弃一些在数据结构中的信息

        一般而言,对于服务器出现大量的CLOSE_WAIT状态,原因就是服务器没有正确关闭socket,导致四次挥手没有正确完成,这是应该BUG;只需要加上对应的close即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1531844.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Matlab中inv()函数的使用

在Matlab中,inv()函数是用来求解矩阵的逆矩阵的函数。逆矩阵是一个与原矩阵相乘后得到单位矩阵的矩阵。在数学中,矩阵A的逆矩阵通常用A^-1表示。 什么是逆矩阵 在数学中,对于一个n阶方阵A,如果存在一个n阶方阵B,使得…

华为综合案例-普通WLAN全覆盖配置(1)

适用范围和业务需求 适用范围 本案例适用于大多数场景,如办公室、普通教室、会议室等普通非高密场景。 业务需求 主要业务需求如下: 接入需求 随时、随地无线业务接入。无线覆盖需要做到覆盖均匀、无盲区。 无线漫游需求 多层网络、快速切换、网络…

P1143 进制转换题解

题目 请你编一程序实现两种不同进制之间的数据转换。 输入输出格式 输入格式 共三行,第一行是一个正整数,表示需要转换的数的进制n (2≤n≤16),第二行是一个n进制数,若n>10则用大写字母A∼F表示数码10∼15,并且…

使用 GTSAM 进行曲线拟合的示例

GTSAM介绍 GTSAM(通用因子图优化库)是一种用于状态估计和传感器数据融合的开源C++库。它提供了强大的工具,用于在机器人和自主系统领域进行感知、决策和控制。 功能和特点 状态估计与优化: GTSAM 提供了灵活且高效的状态估计框架,能够处理从传感器获取的数据,并…

接口测试系列 —— 转转交易业务场景接口测试实践

01 Why接口测试 一、提高效率 关键词:QA 职责保质保量的完成需求测试工作在保证质量的前提下提高效率,要保证质量,首先需要先弄清楚这次需求的测试范围,针对性的使用不同的测试方法,而接口测试就是其中的一种&#x…

JMeter 并发测试和持续性压测详解

并发测试和持续性压测都是评估系统性能的常用方法,它们可以帮助开发人员发现并解决系统中的性能问题。本文来详细介绍下。 概念 并发测试: 旨在评估系统在同时处理多个用户请求时的性能。在这种 测试 中,系统会暴露于一定数量的用户负载下&…

Bito插件

此文档只作用于指导性工作,更多资料请自行探索。 1、插件安装与介绍 1.1 插件下载与安装 在idea中搜索:Bito Bito is also available for:​编辑VSCode​编辑JetBrains​编辑CLI 1.2 官方介绍 插件:ChatGPT GPT-4 - Bito AI Code Assista…

SQLiteC/C++接口详细介绍sqlite3_stmt类(五)

返回:SQLite—系列文章目录 上一篇:SQLiteC/C接口详细介绍sqlite3_stmt类(四)- 下一篇: 无 12. sqlite3_bind_text16函数 sqlite3_bind_text16函数用于将UTF-16编码的文本数据(字符串)绑定…

推荐一款管理hosts文件的利器

程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一份大厂面试资料《史上最全大厂面试题》,Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

windows下不同python版本切换

一、简介 有时候在windows环境下会安装很多个不同的Python版本,但是在运行一些特定环境时,又需要特定的python版本。于是就需要切换Python版本。 二、实操 右键“我的电脑”-》属性 右侧“高级系统设置” “高级”-》“环境变量” 双击“Path” 可以看到…

计算机视觉之三维重建(2)---摄像机标定

文章目录 一、回顾线代1.1 线性方程组的解1.2 齐次线性方程组的解 二、透镜摄像机的标定2.1 标定过程2.2 提取摄像机参数2.3 参数总结 三、径向畸变的摄像机标定3.1 建模3.2 求解 四、变换4.1 2D平面上的欧式变换4.2 2D平面上的相似变换和仿射变换4.3 2D平面上的透射变换4.4 3D…

深入浅出前端本地储存(1)

引言 2021 年,如果你的前端应用,需要在浏览器上保存数据,有三个主流方案: CookieWeb Storage (LocalStorage)IndexedDB 这些方案就是如今应用最广、浏览器兼容性最高的三种前端储存方案 今天这篇文章就聊一聊这三种方案的历史…

全球首例AI软件工程师Devin:Cognition AI引领智能编程新纪元

近日,初创企业Cognition AI震撼发布了全球首位AI软件工程师——Devin,这一开创性的突破标志着人工智能在编程与软件开发领域的应用迈上了全新的台阶。Devin以其卓越的计算机推理与规划能力,正在重新定义我们对软件工程实践的理解。 Devin&am…

软件设计师:03 - 数据库系统

一、数据模型的分类 1.1、概念数据模型 1.2、结构数据模型 1.3 真题 二、三级模式 概念模式对应的是基本表,概念模式也称为模式 外模式对应的是视图,也称用户模式或者子模式 内模式对应的是数据库里面的存储文件,也称存储模式 真题 三、两级…

漏洞发现-漏扫项目篇Poc开发Yaml语法反链判断不回显检测Yaml生成

知识点 1、Xray&Afrog-Poc开发-环境配置&编写流程 2、Xray-Poc开发-数据回显&RCE不回显&实验室 3、Afrog-Poc开发-数据回显&RCE不回显&JDNI注入 章节点: 漏洞发现-Web&框架组件&中间件&APP&小程序&系统 扫描项目-综合…

三连杆滑块机构运动学仿真 | 【Matlab源码+理论公式文本】|曲柄滑块 | 曲柄连杆 | 机械连杆

【程序简介】💻🔍 本程序通过matlab实现了三连杆滑块机构的运动学仿真编程,动态展现了三连杆机构的运动动画,同时给出了角位移、角速度和角加速度的时程曲线,除了程序本身,还提供了机构运动学公式推导文档…

防火墙互联技术

1.防火墙基础配置 2.配置防火墙远程管理 3.配置防火墙管理员角色 4.配置防火墙系统时钟 抓包

自动化测试报告生成(Allure)

🍅 视频学习:文末有免费的配套视频可观看 🍅 关注公众号【互联网杂货铺】,回复 1 ,免费获取软件测试全套资料,资料在手,涨薪更快 之前尝试使用过testNG自带的测试报告、优化过reportNG的测试报告…

备战蓝桥杯D33 - 真题 - 松散子序列

题目描述 解题思路 ps:思路是我看了大佬的题解后自己的理解,自己给自己捋清楚思路。 1.设置输入,将字符串输入 2.因为输入的是字符,但要找出字符的最大价值,所以先将字符串转化成对应的数值。 这时候就要用到ord函…

基于SSM的宿舍管理系统的设计与实现(JSP,MySQL)

摘 要 随着社会发展、信息技术的普及,人们日常管理工作也发生了巨大的变化。信息化技术之渗透各行业的方方面面。学生宿舍管理作为校园管理工作的重要一环,不仅关系到学生自身的确切利益,同时也是对校园管理工作重大考验。近来年由于在校学生…