YOLOv8改进 | 主干篇 | 利用图像分割网络UNetV2改善图像分割检测性能(全网独家首发)

news2025/1/17 13:58:30

一、本文介绍

本文给大家带来的改进机制是利用图像分割网络UNetV2的主干来改进我们的YOLOv8分割模型(本文的内容虽然YOLOv8所有的功能的用户都能使用,但是还是建议分割的用户使用),U-Net v2 旨在改进医学图像分割的性能,通过引入一种新的、更为高效的跳跃连接设计来实现。这个版本的U-Net专注于更好地融合来自不同层级的特征——既包括从高级特征中提取的语义信息,也包括从低级特征中提取的细节信息。通过这种方式,U-Net v2能够在低级特征中注入丰富的语义信息,并同时精细化高级特征,从而实现对医学图像中对象边界的精确勾画和小结构的有效提取。

 欢迎大家订阅我的专栏一起学习YOLO!  

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制 

目录

一、本文介绍

二、原理介绍 

三、核心代码 

四、添加方式 

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四

4.5 修改五

4.6 修改六

4.7 修改七

4.8 修改八

注意!!! 额外的修改!

打印计算量问题解决方案

注意事项!!! 

五、UNetV2的yaml文件

5.1 UNetV2的yaml文件

5.2 训练文件的代码

六、成功运行记录 

七、本文总结


 二、原理介绍 

官方论文地址:官方论文地址点击此处即可跳转

官方代码地址:官方代码地址点击此处即可跳转


U-Net v2 旨在改进医学图像分割的性能,通过引入一种新的、更为高效的跳跃连接设计来实现。这个版本的U-Net专注于更好地融合来自不同层级的特征——既包括从高级特征中提取的语义信息,也包括从低级特征中提取的细节信息。通过这种方式,U-Net v2能够在低级特征中注入丰富的语义信息,并同时精细化高级特征,从而实现对医学图像中对象边界的精确勾画和小结构的有效提取。

关键的技术创新包括:

  • 多级特征提取:使用深度神经网络编码器从输入图像中提取多级特征。
  • 语义与细节融合(Semantics and Detail Infusion, SDI)模块:通过哈达玛积操作,将高级特征中的语义信息和低级特征中的细节信息融合到每个层级的特征图中。
  • 改进的跳跃连接:这些新型的跳跃连接能够提升所有层级特征的语义特性和细节复杂性,从而在解码器进行更进一步的处理和分割时,能够实现更准确的分割效果。

U-Net v2的另一个亮点是其高效性,它在保持计算和内存效率的同时,显著提高了分割任务的准确度。这一点通过在多个公开的医学图像分割数据集上的评估得到了验证,包括皮肤病变分割和息肉分割等任务。实验结果显示,U-Net v2在这些任务上均优于现有的最先进方法。

此外,U-Net v2的设计支持它可以无缝集成到任何编码器-解码器网络架构中,提供了良好的通用性和灵活性。研究者还提供了U-Net v2的开源代码,便于社区进一步研究和应用。

总结而言,U-Net v2为医学图像分割领域带来了一种新的、高效且准确的模型架构,特别是在处理有限数据条件下的医学图像时,展现了其强大的性能和应用潜力。


三、核心代码 

此处声明一下:UNet是一整个模型类似于YOLO这样,我们这里是采用了UNetV2的主干进行实验,其中其Neck部分主要提出了SDI我之前发过这个机制,大家应该有用过。

import os.path
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import math

__all__ = ['pvt_v2_b0', 'pvt_v2_b1', 'pvt_v2_b2', 'pvt_v2_b3', 'pvt_v2_b4', 'pvt_v2_b5']

class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)

        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)


class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1

        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)


class BasicConv2d(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1):
        super(BasicConv2d, self).__init__()

        self.conv = nn.Conv2d(in_planes, out_planes,
                              kernel_size=kernel_size, stride=stride,
                              padding=padding, dilation=dilation, bias=False)
        self.bn = nn.BatchNorm2d(out_planes)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class Encoder(nn.Module):
    def __init__(self, pretrain_path):
        super().__init__()
        self.backbone = pvt_v2_b2()

        if pretrain_path is None:
            warnings.warn('please provide the pretrained pvt model. Not using pretrained model.')
        elif not os.path.isfile(pretrain_path):
            warnings.warn(f'path: {pretrain_path} does not exists. Not using pretrained model.')
        else:
            print(f"using pretrained file: {pretrain_path}")
            save_model = torch.load(pretrain_path)
            model_dict = self.backbone.state_dict()
            state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
            model_dict.update(state_dict)

            self.backbone.load_state_dict(model_dict)

    def forward(self, x):
        f1, f2, f3, f4 = self.backbone(x)  # (x: 3, 352, 352)
        return f1, f2, f3, f4


class SDI(nn.Module):
    def __init__(self, channel):
        super().__init__()

        self.convs = nn.ModuleList(
            [nn.Conv2d(channel, channel, kernel_size=3, stride=1, padding=1) for _ in range(4)])

    def forward(self, xs, anchor):
        ans = torch.ones_like(anchor)
        target_size = anchor.shape[-1]

        for i, x in enumerate(xs):
            if x.shape[-1] > target_size:
                x = F.adaptive_avg_pool2d(x, (target_size, target_size))
            elif x.shape[-1] < target_size:
                x = F.interpolate(x, size=(target_size, target_size),
                                      mode='bilinear', align_corners=True)

            ans = ans * self.convs[i](x)

        return ans


class UNetV2(nn.Module):
    """
    use SpatialAtt + ChannelAtt
    """
    def __init__(self, channel=3, n_classes=1, deep_supervision=True, pretrained_path=None):
        super().__init__()
        self.deep_supervision = deep_supervision

        self.encoder = Encoder(pretrained_path)

        self.ca_1 = ChannelAttention(64)
        self.sa_1 = SpatialAttention()

        self.ca_2 = ChannelAttention(128)
        self.sa_2 = SpatialAttention()

        self.ca_3 = ChannelAttention(320)
        self.sa_3 = SpatialAttention()

        self.ca_4 = ChannelAttention(512)
        self.sa_4 = SpatialAttention()

        self.Translayer_1 = BasicConv2d(64, channel, 1)
        self.Translayer_2 = BasicConv2d(128, channel, 1)
        self.Translayer_3 = BasicConv2d(320, channel, 1)
        self.Translayer_4 = BasicConv2d(512, channel, 1)

        self.sdi_1 = SDI(channel)
        self.sdi_2 = SDI(channel)
        self.sdi_3 = SDI(channel)
        self.sdi_4 = SDI(channel)

        self.seg_outs = nn.ModuleList([
            nn.Conv2d(channel, n_classes, 1, 1) for _ in range(4)])

        self.deconv2 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2, padding=1,
                                          bias=False)
        self.deconv3 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,
                                          padding=1, bias=False)
        self.deconv4 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,
                                          padding=1, bias=False)
        self.deconv5 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,
                                          padding=1, bias=False)

        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def forward(self, x):
        seg_outs = []
        f1, f2, f3, f4 = self.encoder(x)

        f1 = self.ca_1(f1) * f1
        f1 = self.sa_1(f1) * f1
        f1 = self.Translayer_1(f1)

        f2 = self.ca_2(f2) * f2
        f2 = self.sa_2(f2) * f2
        f2 = self.Translayer_2(f2)

        f3 = self.ca_3(f3) * f3
        f3 = self.sa_3(f3) * f3
        f3 = self.Translayer_3(f3)

        f4 = self.ca_4(f4) * f4
        f4 = self.sa_4(f4) * f4
        f4 = self.Translayer_4(f4)

        f41 = self.sdi_4([f1, f2, f3, f4], f4)
        f31 = self.sdi_3([f1, f2, f3, f4], f3)
        f21 = self.sdi_2([f1, f2, f3, f4], f2)
        f11 = self.sdi_1([f1, f2, f3, f4], f1)

        seg_outs.append(self.seg_outs[0](f41))

        y = self.deconv2(f41) + f31
        seg_outs.append(self.seg_outs[1](y))

        y = self.deconv3(y) + f21
        seg_outs.append(self.seg_outs[2](y))

        y = self.deconv4(y) + f11
        seg_outs.append(self.seg_outs[3](y))

        for i, o in enumerate(seg_outs):
            seg_outs[i] = F.interpolate(o, scale_factor=4, mode='bilinear')

        if self.deep_supervision:
            return seg_outs[::-1]
        else:
            return seg_outs[-1]



class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.dwconv = DWConv(hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W):
        x = self.fc1(x)
        x = self.dwconv(x, H, W)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W):
        B, N, C = x.shape
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
            x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        else:
            kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        k, v = kv[0], kv[1]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W):
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        x = x + self.drop_path(self.mlp(self.norm2(x), H, W))

        return x


class OverlapPatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)

        self.img_size = img_size
        self.patch_size = patch_size
        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        self.num_patches = self.H * self.W
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
                              padding=(patch_size[0] // 2, patch_size[1] // 2))
        self.norm = nn.LayerNorm(embed_dim)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x):
        x = self.proj(x)
        _, _, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)

        return x, H, W


class PyramidVisionTransformerImpr(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
                 num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
                 depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
        super().__init__()
        self.num_classes = num_classes
        self.depths = depths

        # patch_embed
        self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
                                              embed_dim=embed_dims[0])
        self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
                                              embed_dim=embed_dims[1])
        self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
                                              embed_dim=embed_dims[2])
        self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
                                              embed_dim=embed_dims[3])

        # transformer encoder
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0
        self.block1 = nn.ModuleList([Block(
            dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[0])
            for i in range(depths[0])])
        self.norm1 = norm_layer(embed_dims[0])

        cur += depths[0]
        self.block2 = nn.ModuleList([Block(
            dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[1])
            for i in range(depths[1])])
        self.norm2 = norm_layer(embed_dims[1])

        cur += depths[1]
        self.block3 = nn.ModuleList([Block(
            dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[2])
            for i in range(depths[2])])
        self.norm3 = norm_layer(embed_dims[2])

        cur += depths[2]
        self.block4 = nn.ModuleList([Block(
            dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[3])
            for i in range(depths[3])])
        self.norm4 = norm_layer(embed_dims[3])

        # classification head
        # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = 1
            #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)

    def reset_drop_path(self, drop_path_rate):
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
        cur = 0
        for i in range(self.depths[0]):
            self.block1[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[0]
        for i in range(self.depths[1]):
            self.block2[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[1]
        for i in range(self.depths[2]):
            self.block3[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[2]
        for i in range(self.depths[3]):
            self.block4[i].drop_path.drop_prob = dpr[cur + i]

    def freeze_patch_emb(self):
        self.patch_embed1.requires_grad = False

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    # def _get_pos_embed(self, pos_embed, patch_embed, H, W):
    #     if H * W == self.patch_embed1.num_patches:
    #         return pos_embed
    #     else:
    #         return F.interpolate(
    #             pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2),
    #             size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1)

    def forward_features(self, x):
        B = x.shape[0]
        outs = []

        # stage 1
        x, H, W = self.patch_embed1(x)
        for i, blk in enumerate(self.block1):
            x = blk(x, H, W)
        x = self.norm1(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        # stage 2
        x, H, W = self.patch_embed2(x)
        for i, blk in enumerate(self.block2):
            x = blk(x, H, W)
        x = self.norm2(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        # stage 3
        x, H, W = self.patch_embed3(x)
        for i, blk in enumerate(self.block3):
            x = blk(x, H, W)
        x = self.norm3(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        # stage 4
        x, H, W = self.patch_embed4(x)
        for i, blk in enumerate(self.block4):
            x = blk(x, H, W)
        x = self.norm4(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        return outs

        # return x.mean(dim=1)

    def forward(self, x):
        x = self.forward_features(x)
        # x = self.head(x)

        return x


class DWConv(nn.Module):
    def __init__(self, dim=768):
        super(DWConv, self).__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)

    def forward(self, x, H, W):
        B, N, C = x.shape
        x = x.transpose(1, 2).view(B, C, H, W)
        x = self.dwconv(x)
        x = x.flatten(2).transpose(1, 2)

        return x


def _conv_filter(state_dict, patch_size=16):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v

    return out_dict


class pvt_v2_b0(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b0, self).__init__(
            patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)

class pvt_v2_b1(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b1, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)

class pvt_v2_b2(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b2, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)

class pvt_v2_b3(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b3, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)

class pvt_v2_b4(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b4, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


class pvt_v2_b5(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b5, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)

if __name__ == "__main__":
    pretrained_path = "/afs/crc.nd.edu/user/y/ypeng4/Polyp-PVT_2/pvt_pth/pvt_v2_b2.pth"
    model = pvt_v2_b5()
    x = torch.rand((1, 3, 640, 640))
    ys = model(x)
    print(len(ys))
    for y in ys:
        print(y.shape)


四、添加方式 

4.1 修改一

第一步还是建立文件,我们找到如下ultralytics/nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.4 修改四

添加如下两行代码!!!


4.5 修改五

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m(*args)
            c2 = m.width_list  # 返回通道列表
            backbone = True


4.6 修改六

下面的两个红框内都是需要改动的。 

        if isinstance(c2, list):
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type


        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type


4.7 修改七

如下的也需要修改,全部按照我的来。

代码如下把原先的代码替换了即可。 

        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print

        save.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            if len(c2) != 5:
                ch.insert(0, 0)
        else:
            ch.append(c2)


4.8 修改八

修改七和前面的都不太一样,需要修改前向传播中的一个部分, 已经离开了parse_model方法了。

可以在图片中开代码行数,没有离开task.py文件都是同一个文件。 同时这个部分有好几个前向传播都很相似,大家不要看错了,是70多行左右的!!!,同时我后面提供了代码,大家直接复制粘贴即可,有时间我针对这里会出一个视频。

代码如下->

    def _predict_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5: # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1] # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

到这里就完成了修改部分,但是这里面细节很多,大家千万要注意不要替换多余的代码,导致报错,也不要拉下任何一部,都会导致运行失败,而且报错很难排查!!!很难排查!!! 


注意!!! 额外的修改!

关注我的其实都知道,我大部分的修改都是一样的,这个网络需要额外的修改一步,就是s一个参数,将下面的s改为640!!!即可完美运行!!


打印计算量问题解决方案

我们找到如下文件'ultralytics/utils/torch_utils.py'按照如下的图片进行修改,否则容易打印不出来计算量。


注意事项!!! 

如果大家在验证的时候报错形状不匹配的错误可以固定验证集的图片尺寸,方法如下 ->

找到下面这个文件ultralytics/models/yolo/detect/train.py然后其中有一个类是DetectionTrainer class中的build_dataset函数中的一个参数rect=mode == 'val'改为rect=False

五、UNetV2的yaml文件

5.1 UNetV2的yaml文件

复制如下yaml文件进行运行!!! 

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs


# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, pvt_v2_b0, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

5.2 训练文件的代码

可以复制我的运行文件进行运行。

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO("替换你的yaml文件地址")
    model.load('yolov8n.pt') 
    model.train(data=r'你的数据集的地址',
                cache=False,
                imgsz=640,
                epochs=150,
                batch=4,
                close_mosaic=0,
                workers=0,
                device=0,
                optimizer='SGD'
                amp=False,
                )


六、成功运行记录 

下面是成功运行的截图,已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


七、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1530339.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring-Gateway服务网关

一、网关介绍 1. 为什么需要网关 Gateway网关是我们服务的守门神&#xff0c;所有微服务的统一入口。 网关的核心功能特性&#xff1a; 请求路由 权限控制 限流 架构图&#xff1a; 权限控制&#xff1a;网关作为微服务入口&#xff0c;需要校验用户是是否有请求资格&am…

Zerotier 异地组网方案初探

前言 我之前想要异地组网的话&#xff0c;一般都采用内网穿透的方法&#xff0c;但是这个内网穿透有弊端就是都是要通过公网服务器转发流量&#xff0c;对于大流量的传输就比较不方便&#xff0c;我发现了Zerotier 这个工具非常的好用&#xff0c;是基于p2p的 这是一个类似于…

【SpringBoot3+Mybatis】框架快速搭建

文章目录 GitHub 项目一、依赖二、 配置文件三、启动类四、SpringBoot3兼容Druid报错五、工具类5.1 结果封装类5.2 解决枚举类5.3 MD5加密工具类 GitHub 项目 springboot-part——springboot-integrate-07 Mybatis-plus版完整CRUD项目文档记录&#xff1a; 【SpringBoot3Myba…

【项目实践Day06】异步请求与同步请求+Ajax+微信小程序上实现发送异步请求

什么是同步和异步 同步 在主线程上排队执行的任务&#xff0c;只有前一个任务执行完毕&#xff0c;才能继续执行下一个任务。也就是一旦调用开始&#xff0c;就必须等待其返回结果&#xff0c;程序的执行顺序和任务排列顺序一致。客户端必须等待服务器端的响应。在等待的期间客…

【保姆级】前端使用node.js基础教程

文章目录 安装和版本管理&#xff1a;npm 命令&#xff08;Node 包管理器&#xff09;&#xff1a;运行 Node.js 脚本&#xff1a;调试和开发工具&#xff1a;其他常用命令&#xff1a;模块管理&#xff1a;包管理&#xff1a;调试工具&#xff1a;异步编程和包管理&#xff1a…

kafka2.x版本配置SSL进行加密和身份验证

背景&#xff1a;找了一圈资料&#xff0c;都是东讲讲西讲讲&#xff0c;最后我还没搞好&#xff0c;最终决定参考官网说明。 官网指导手册地址&#xff1a;Apache Kafka 需要预备的知识&#xff0c;keytool和openssl 关于keytool的参考&#xff1a;keytool的使用-CSDN博客 …

【漏洞复现】正方教学管理信息服务平台ReportServer存在任意文件读取

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

wireshark数据捕获实验简述

Wireshark是一款开源的网络协议分析工具&#xff0c;它可以用于捕获和分析网络数据包。是一款很受欢迎的“网络显微镜”。 实验拓扑图&#xff1a; 实验基础配置&#xff1a; 服务器&#xff1a; ip:172.16.1.88 mask:255.255.255.0 r1: sys sysname r1 undo info enable in…

HCIP作业

实验要求&#xff1a; 1、R6为ISP&#xff0c;接口IP地址均为公有地址&#xff0c;该设备只能配置IP地址&#xff0c;之后不能再对其进行任何配置&#xff1b; 2、R1-R5为局域网&#xff0c;私有IP地址192.168.1.0/24&#xff0c;请合理分配&#xff1b; 3、R1、R2、R4&#x…

java数据结构与算法刷题-----LeetCode135. 分发糖果

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 1. 左右遍历2. 进阶&#xff1a;常数空间遍历&#xff0c;升序降…

LabVIEW NV色心频率扫描

LabVIEW NV色心频率扫描 通过LabVIEW软件开发一个能够实现对金刚石氮空位&#xff08;Nitrogen-Vacancy&#xff0c;NV&#xff09;色心的频率扫描系统。系统通过USB协议与硬件设备通信&#xff0c;对NV色心进行高精度的频率扫描&#xff0c;满足了频率在2.6 GHz到3.2 GHz范围…

使用DMA方式控制串口

本身DMA没什么问题&#xff0c;但是最后用GPIOB点灯&#xff0c;就是点不亮。 回到原来GPIO点灯程序&#xff0c;使用GPIOB就是不亮&#xff0c;替换为GPIOA就可以&#xff0c;简单问题总是卡得很伤。

微信小程序的配置文件使用说明:

在上一文中学习开发小程序的起航日记&#xff0c;我们准备好了开发小程序时所需的环境和准备工作&#xff0c;同时也简单的了解了一下小程序的项目结构组成。 这一章&#xff0c;我们主要对小程序的配置文件进行学习。 文章目录 小程序_配置文件1.json2.app.jsonpages 属性wind…

C++:类和对象(上篇)

目录&#xff1a; 一&#xff1a;面向对象和过程的介绍 二&#xff1a;类的引入 三&#xff1a;类的定义 四&#xff1a;类的访问限定符以及封装 五&#xff1a;类的作用域 六&#xff1a;类的实例化 七&#xff1a;类对象大小的计算 八&#xff1a;类成员函数的this指…

DolphinScheduler运维-页面加载缓慢

一、问题描述 DolphinScheduler调度平台的UI界面加载缓慢,项目中的任务实例加载时间过长,需要解决这个问题,提高DolphinScheduler平台UI页面的加载速度。 二、原因分析 经过分析发现,任务实例过多是导致UI加载缓慢的主要原因。由于任务实例无法直接删除,根据文档了解到需…

基于docker+rancher部署Vue项目的教程

基于dockerrancher部署Vue的教程 前段时间总有前端开发问我Vue如何通过docker生成镜像&#xff0c;并用rancher上进行部署&#xff1f;今天抽了2个小时研究了一下&#xff0c;给大家记录一下这个过程。该部署教程适用于Vue、Vue2、Vue3等版本。 PS&#xff1a;该教程基于有一定…

UART动态调整接收时钟

文章目录 一、UART接收模块误码率二、接收时钟动态纠正方法2.1、过采样2.2、上板效果 一、UART接收模块误码率 由于发送端和接收端存在一定的频率误差&#xff0c;随着时间的推移&#xff0c;累计误差不断增加&#xff0c;从而产生亚稳态现象&#xff0c;会导致误码&#xff0…

【Vue3】组件通信以及各种方式的对比

方式一&#xff1a;props 「父」向「子」组件发送数据 父组件&#xff1a; 定义需要传递给子组件的数据&#xff0c;并使用 v-bind 指令将其绑定到子组件的 props 上。 <template><child-component :message"parentMessage" /> </template><sc…

3.19网络编程

select实现的TCP并发服务器 #include <myhead.h> #define SER_IP "192.168.141.134" #define SER_PORT 8888 int main(int argc, const char *argv[]) {// 1、创建一个套接字int sfd -1;sfd socket(AF_INET, SOCK_STREAM, 0);if (sfd -1){perr…

【leetcode热题】 地下城游戏

恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里&#xff0c;他必须穿过地下城并通过对抗恶魔来拯救公主。 骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0…