分布式搜索引擎elasticsearch专栏三

news2024/11/29 20:37:29

1.数据聚合

聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?

  • 这些手机的平均价格、最高价格、最低价格?

  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

1.1.聚合的种类

聚合常见的有三类:

  • 桶(Bucket)聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组

    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组

  • 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值

    • Max:求最大值

    • Min:求最小值

    • Stats:同时求max、min、avg、sum等

  • 管道(pipeline)聚合:其它聚合的结果为基础做聚合

注意:参加聚合的字段必须是keyword、日期、数值、布尔类型

1.2.DSL实现聚合

现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。

1.2.1.Bucket聚合语法

语法如下:

GET /hotel/_search
{
  "size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果
  "aggs": { // 定义聚合
    "brandAgg": { //给聚合起个名字
      "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
        "field": "brand", // 参与聚合的字段
        "size": 20 // 希望获取的聚合结果数量
      }
    }
  }
}

结果如图:

1.2.2.聚合结果排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为count,并且按照count降序排序。

我们可以指定order属性,自定义聚合的排序方式:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc" // 按照_count升序排列
        },
        "size": 20
      }
    }
  }
}

1.2.3.限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

我们可以限定要聚合的文档范围,只要添加query条件即可:

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200 // 只对200元以下的文档聚合
      }
    }
  }, 
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

这次,聚合得到的品牌明显变少了:

1.2.4.Metric聚合语法

上节课,我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。

这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。

语法如下:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20
      },
      "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": { // 聚合名称
          "stats": { // 聚合类型,这里stats可以计算min、max、avg等
            "field": "score" // 聚合字段,这里是score
          }
        }
      }
    }
  }
}

这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。

另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:

1.2.5.小结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称

  • 聚合类型

  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量

  • order:指定聚合结果排序方式

  • field:指定聚合字段

1.3.RestAPI实现聚合

1.3.1.API语法

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件的语法:

聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:

2.自动补全

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:

这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。

因为需要根据拼音字母来推断,因此要用到拼音分词功能。

2.1.拼音分词器

要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin

安装方式与IK分词器一样,分三步:

​ ①解压

​ ②上传到虚拟机中,elasticsearch的plugin目录

​ ③重启elasticsearch

​ ④测试

测试用法如下:

POST /_analyze
{
  "text": "如家酒店还不错",
  "analyzer": "pinyin"
}

结果:

2.2.自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符

  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart

  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

文档分词时会依次由这三部分来处理文档:

声明自定义分词器的语法如下:

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { // 自定义分词器
        "my_analyzer": {  // 分词器名称
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": { // 自定义tokenizer filter
        "py": { // 过滤器名称
          "type": "pinyin", // 过滤器类型,这里是pinyin
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}

测试:

总结:

如何使用拼音分词器?

  • ①下载pinyin分词器

  • ②解压并放到elasticsearch的plugin目录

  • ③重启即可

如何自定义分词器?

  • ①创建索引库时,在settings中配置,可以包含三部分

  • ②character filter

  • ③tokenizer

  • ④filter

拼音分词器注意事项?

  • 为了避免搜索到同音字,搜索时不要使用拼音分词器

2.3.自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。

  • 字段的内容一般是用来补全的多个词条形成的数组。

比如,一个这样的索引库:

// 创建索引库
PUT test
{
  "mappings": {
    "properties": {
      "title":{
        "type": "completion"
      }
    }
  }
}

然后插入下面的数据:

// 示例数据
POST test/_doc
{
  "title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
  "title": ["SK-II", "PITERA"]
}
POST test/_doc
{
  "title": ["Nintendo", "switch"]
}

查询的DSL语句如下:

// 自动补全查询
GET /test/_search
{
  "suggest": {
    "title_suggest": {
      "text": "s", // 关键字
      "completion": {
        "field": "title", // 补全查询的字段
        "skip_duplicates": true, // 跳过重复的
        "size": 10 // 获取前10条结果
      }
    }
  }
}

2.4.实现酒店搜索框自动补全

现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建。

另外,我们需要添加一个字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示。

因此,总结一下,我们需要做的事情包括:

  1. 修改hotel索引库结构,设置自定义拼音分词器

  2. 修改索引库的name、all字段,使用自定义分词器

  3. 索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器

  4. 给HotelDoc类添加suggestion字段,内容包含brand、business

  5. 重新导入数据到hotel库

2.4.1.修改酒店映射结构

代码如下:

// 酒店数据索引库
PUT /hotel
{
  "settings": {
    "analysis": {
      "analyzer": {
        "text_anlyzer": {
          "tokenizer": "ik_max_word",
          "filter": "py"
        },
        "completion_analyzer": {
          "tokenizer": "keyword",
          "filter": "py"
        }
      },
      "filter": {
        "py": {
          "type": "pinyin",
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "id":{
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword",
        "copy_to": "all"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart"
      },
      "suggestion":{
          "type": "completion",
          "analyzer": "completion_analyzer"
      }
    }
  }
}

2.4.2.修改HotelDoc实体

HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。

因此我们在HotelDoc中添加一个suggestion字段,类型为List<String>,然后将brand、city、business等信息放到里面。

代码如下:

package com.kjz.hotel.pojo;
​
import lombok.Data;
import lombok.NoArgsConstructor;
​
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
​
@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    private Object distance;
    private Boolean isAD;
    private List<String> suggestion;
​
    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
        // 组装suggestion
        if(this.business.contains("/")){
            // business有多个值,需要切割
            String[] arr = this.business.split("/");
            // 添加元素
            this.suggestion = new ArrayList<>();
            this.suggestion.add(this.brand);
            Collections.addAll(this.suggestion, arr);
        }else {
            this.suggestion = Arrays.asList(this.brand, this.business);
        }
    }
}

2.4.3.重新导入

重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:

2.4.4.自动补全查询的JavaAPI

之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:

而自动补全的结果也比较特殊,解析的代码如下:

2.4.5.实现搜索框自动补全

查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:

返回值是补全词条的集合,类型为List<String>

1)在com.kjz.hotel.web包下的HotelController中添加新接口,接收新的请求:

@GetMapping("suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix) {
    return hotelService.getSuggestions(prefix);
}

2)在com.kjz.hotel.web包下的IhotelService中添加方法:

List<String> getSuggestions(String prefix);

3)在com.kjz.hotel.service.impl.HotelService中实现该方法:

@Override
public List<String> getSuggestions(String prefix) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        request.source().suggest(new SuggestBuilder().addSuggestion(
            "suggestions",
            SuggestBuilders.completionSuggestion("suggestion")
            .prefix(prefix)
            .skipDuplicates(true)
            .size(10)
        ));
        // 3.发起请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析结果
        Suggest suggest = response.getSuggest();
        // 4.1.根据补全查询名称,获取补全结果
        CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
        // 4.2.获取options
        List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
        // 4.3.遍历
        List<String> list = new ArrayList<>(options.size());
        for (CompletionSuggestion.Entry.Option option : options) {
            String text = option.getText().toString();
            list.add(text);
        }
        return list;
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

3.数据同步

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步

3.1.思路分析

常见的数据同步方案有三种:

  • 同步调用

  • 异步通知

  • 监听binlog

3.1.1.同步调用

方案一:同步调用

基本步骤如下:

  • hotel-demo对外提供接口,用来修改elasticsearch中的数据

  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

3.1.2.异步通知

方案二:异步通知

流程如下:

  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息

  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

3.1.3.监听binlog

方案三:监听binlog

流程如下:

  • 给mysql开启binlog功能

  • mysql完成增、删、改操作都会记录在binlog中

  • hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容

3.1.4.选择

方式一:同步调用

  • 优点:实现简单,粗暴

  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般

  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合

  • 缺点:开启binlog增加数据库负担、实现复杂度高

3.2.实现数据同步

3.2.1.思路

利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。

步骤:

  • 导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD

  • 声明exchange、queue、RoutingKey

  • 在hotel-admin中的增、删、改业务中完成消息发送

  • 在hotel-demo中完成消息监听,并更新elasticsearch中数据

  • 启动并测试数据同步功能

4.集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点

  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • <font color="red">节点(node)</font> :集群中的一个 Elasticearch 实例

  • <font color="red">分片(shard)</font>:索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

    此处,我们把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点

  • 然后对每个分片进行备份,放到对方节点,完成互相备份

这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:

现在,每个分片都有1个备份,存储在3个节点:

  • node0:保存了分片0和1

  • node1:保存了分片0和2

  • node2:保存了分片1和2

4.1.搭建ES集群

我们会在单机上利用docker容器运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。

部署es集群可以直接使用docker-compose来完成,但这要求你的Linux虚拟机至少有4G的内存空间

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:
  es01:
    image: elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data02:/usr/share/elasticsearch/data
    ports:
      - 9201:9200
    networks:
      - elastic
  es03:
    image: elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic
    ports:
      - 9202:9200
volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local
​
networks:
  elastic:
    driver: bridge

es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

添加下面的内容:

vm.max_map_count=262144

然后执行命令,让配置生效:

sysctl -p

通过docker-compose启动集群:

docker-compose up -d

4.1.2.集群状态监控

kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。

这里推荐使用cerebro来监控es集群状态,官方网址:GitHub - lmenezes/cerebro

下载后的安装包解压好的目录如下:

进入对应的bin目录:

双击其中的cerebro.bat文件即可启动服务。

访问http://localhost:9000 即可进入管理界面:

输入你的elasticsearch的任意节点的地址和端口,点击connect即可:

绿色的条,代表集群处于绿色(健康状态)。

4.1.2.创建索引库

1)利用kibana的DevTools创建索引库

在DevTools中输入指令:

PUT /itcast
{
  "settings": {
    "number_of_shards": 3, // 分片数量
    "number_of_replicas": 1 // 副本数量
  },
  "mappings": {
    "properties": {
      // mapping映射定义 ...
    }
  }
}
2)利用cerebro创建索引库

利用cerebro还可以创建索引库:

填写索引库信息:

点击右下角的create按钮:

4.1.3.查看分片效果

回到首页,即可查看索引库分片效果:

4.2.集群脑裂问题

4.2.1.集群职责划分

elasticsearch中集群节点有不同的职责划分:

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第

  • data节点:对CPU和内存要求都高

  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:

4.2.2.脑裂问题

脑裂是因为集群中的节点失联导致的。

例如一个集群中,主节点与其它节点失联:

此时,node2和node3认为node1宕机,就会重新选主:

当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。

4.2.3.小结

master eligible节点的作用是什么?

  • 参与集群选主

  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点

  • 合并查询到的结果,返回给用户

4.3.集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?

4.3.1.分片存储测试

插入三条数据:

测试可以看到,三条数据分别在不同分片:

结果:

4.3.2.分片存储原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

说明:

  • _routing默认是文档的id

  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档的流程如下:

解读:

  • 1)新增一个id=1的文档

  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2

  • 3)shard-2的主分片在node3节点,将数据路由到node3

  • 4)保存文档

  • 5)同步给shard-2的副本replica-2,在node2节点

  • 6)返回结果给coordinating-node节点

4.4.集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片

  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

4.5.集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:

现在,node1是主节点,其它两个节点是从节点。

2)突然,node1发生了故障:

宕机后的第一件事,需要重新选主,例如选中了node2:

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1529724.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

3.19作业

1、思维导图 2、模拟面试题 1&#xff09;TCP通信中的三次握手和四次挥手 答&#xff1a;三次握手 客户端向服务器发送连接请求 服务器向客户端回复应答并向客户端发送连接请求 客户端回复服务端&#xff0c;并建立联系 四次挥手 进程a向进程b发送断开连接请求…

vue axios 缓存 接口请求实现缓存加载

文章写的多了&#xff0c;开头就不知道怎么写了&#xff0c;硬挤一些句子总觉的卖弄。其实更多的想留下各位看官&#xff0c;多多的点赞&#xff0c;多多的关注&#xff0c;多的收藏。为将来的博客化动作做好前期数据粉丝基础。哦哦哦&#xff0c;我在想啥呢。。这大下午的。。…

软件工程-第11章 内容总结

如果不想读这本书&#xff0c;直接看这一章即可。 11.1 关于软件过程范型 11.2 关于软件设计方法

java算法第28天 | 93.复原IP地址 78.子集 90.子集II

93.复原IP地址 思路&#xff1a; 这里startIndex为插入‘.’的位置&#xff0c;使用回溯法遍历所有插入的位置&#xff0c;直接在原始字符串上操作。要注意的是开闭区间的规定&#xff08;这里我规定的是左闭右闭区间&#xff09;。还要明确什么时候能return。 class Solution…

在 vite 开发环境,使用https自签证书 --- mkcert

在 vite 开发环境&#xff0c;使用https自签证书 — mkcert 使用basicSsl&#xff08;vitejs/plugin-basic-ssl&#xff09; 在vite开发环境中&#xff0c;使用 basicSsl 插件能暂时提供https服务&#xff0c;同时&#xff0c;也会面临总是提示一下的问题,如下图 提示https证…

2024.3.20 使用maven打包jar文件和保存到本地仓库

2024.3.20 使用maven打包jar文件和保存到本地仓库 使用maven可以很方便地打包jar文件和导入jar文件&#xff0c;同时还可以将该文件保存在本地仓库重复调用。 使用maven打包jar文件和保存到本地仓库 package打包文件。 install导入本地仓库。 使用maven导入jar文件 点击“…

智能合约 之 部署ERC-20

Remix介绍 Remix是一个由以太坊社区开发的在线集成开发环境&#xff08;IDE&#xff09;&#xff0c;旨在帮助开发者编写、测试和部署以太坊智能合约。它提供了一个简单易用的界面&#xff0c;使得开发者可以在浏览器中直接进行智能合约的开发&#xff0c;而无需安装任何额外的…

WPF —— 控件模版和数据模版

1:控件模版简介: 自定义控件模版&#xff1a;自己添加的样式、标签&#xff0c;控件模版也是属于资源的一种&#xff0c; 每一个控件模版都有一唯一的 key&#xff0c;在控件上通过template属性进行绑定 什么场景下使用自定义控件模版&#xff0c;当项目里面多个地方…

基于python考试分析系统的设计和实现-flask-django-nodejs-php

随着电子技术的普及和快速发展&#xff0c;线上管理系统被广泛的使用&#xff0c;有很多商业机构都在实现电子信息化管理&#xff0c;图书推荐也不例外&#xff0c;由比较传统的人工管理转向了电子化、信息化、系统化的管理。   本文的重点是对考试分析系统展开了详细的描述&a…

整型数组按个位值排序 - 华为OD统一考试(C卷)

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 100分 题解&#xff1a; Java / Python / C 题目描述 给定一个非空数组(列表)&#xff0c;其元素数据类型为整型&#xff0c;请按照数组元素十进制最低位从小到大进行排序&#xff0c;十进制最低位相同的元素&#xf…

英伟达GTC2024大会开幕,发布机器人003计划,引领具身智能新时代

一、背景 在全球科技创新的前沿阵地&#xff0c;2024年3月的英伟达GPU技术大会&#xff08;GTC&#xff09;再次成为全球瞩目的焦点。在此次盛会上&#xff0c;英伟达公司创始人兼首席执行官黄仁勋先生不仅展示了其公司在加速计算和生成式AI领域的最新突破&#xff0c;更震撼发…

[Uni-app] 微信小程序的圆环进度条

效果图&#xff1a; 组件完整代码如下&#xff1a; <template><view class"base-style":style"position: relative;width: diameter px;height: diameter px;display: flex;flex-direction: row;background-color: bgColor ;"><!…

基于nodejs+vue班级管理系统的设计与实现-flask-django-python-php

随着电子技术的普及和快速发展&#xff0c;线上管理系统被广泛的使用&#xff0c;有很多事业单位和商业机构都在实现电子信息化管理&#xff0c;班级管理系统也不例外&#xff0c;由比较传统的人工管理转向了电子化、信息化、系统化的管理。随着互联网技术的高速发展&#xff0…

基于SpringBoot+Redis实现接口限流

前言 业务中需要对一些接口进行限流处理&#xff0c;防止机器人调用或者保证服务质量&#xff1b; 实现方式 基于redis的lua脚本 引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis&…

idea import的maven类报红

idea 报红/显示红色的原因 一般报红&#xff0c;显示红色&#xff0c;是因为 idea 在此路径下&#xff0c;找不到这个类。 找到是哪个 jar 包的类导致 idea 报红 点击报红的路径的上一层&#xff0c;进入jar 包。比如&#xff1a; import com.aaa.bbb.ccc.DddDto;这个 impo…

计算机二级(Python)真题讲解每日一题:《方菱形》

描述‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬ 请写代码替换横线&#xff0…

从服务器到云原生:企业IT基础设施的演进之路

随着数字经济的迅猛发展&#xff0c;企业IT数字化转型已成为推动业务创新和提升竞争力的关键。在这一转型过程中&#xff0c;基础设施的建设与升级显得尤为重要。企业需要不断优化和更新他们的基础设施&#xff0c;以适应不断变化的市场需求和技术发展。本文将探讨企业IT数字化…

大数据面试题 —— Kafka

目录 消息队列 / Kafka 的好处消息队列的两种模式什么是 KafkaKafka 优缺点你在哪些场景下会选择 Kafka讲下 Kafka 的整体结构Kafka 工作原理 / 流程Kafka为什么那么快/高效读写的原因 / 实现高吞吐的原理生产者如何提高吞吐量&#xff08;调优&#xff09;kafka 消息数据积压&…

一维小波包的分解与重构程序深入学习——Matlab

绘制上述图的matlab程序为&#xff1a; clear all; close all; load noisdopp; xnoisdopp; wptwpdec(x,3,db1,shannon) %返回小波包树&#xff0c;设置采用的熵为shannon plot(wpt); %% 学习目标&#xff1a;一维小波包的分解和重构深入学习 %% 获取小波树上某个节点的小…

【滑动窗口、矩阵】算法例题

目录 三、滑动窗口 30. 长度最小的子数组 ② 31. 无重复字符的最长子串 ② 32. 串联所有单词的子串 ③ 33. 最小覆盖子串 ③ 四、矩阵 34. 有效的数独 ② 35. 螺旋矩阵 ② 36. 旋转图像 ② 37. 矩阵置零 ② 38. 生命游戏 ② 三、滑动窗口 30. 长度最小的子数组 ② 给…