Learn OpenGL 18 几何着色器

news2024/10/5 16:27:06

几何着色器

在顶点和片段着色器之间有一个可选的几何着色器(Geometry Shader),几何着色器的输入是一个图元(如点或三角形)的一组顶点。几何着色器可以在顶点发送到下一着色器阶段之前对它们随意变换。然而,几何着色器最有趣的地方在于,它能够将(这一组)顶点变换为完全不同的图元,并且还能生成比原来更多的顶点。

废话不多说,我们直接先看一个几何着色器的例子:

#version 330 core
layout (points) in;
layout (line_strip, max_vertices = 2) out;

void main() {    
    gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0); 
    EmitVertex();

    gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);
    EmitVertex();

    EndPrimitive();
}

在几何着色器的顶部,我们需要声明从顶点着色器输入的图元类型。这需要在in关键字前声明一个布局修饰符(Layout Qualifier)。这个输入布局修饰符可以从顶点着色器接收下列任何一个图元值:

  • points:绘制GL_POINTS图元时(1)。
  • lines:绘制GL_LINES或GL_LINE_STRIP时(2)
  • lines_adjacency:GL_LINES_ADJACENCY或GL_LINE_STRIP_ADJACENCY(4)
  • triangles:GL_TRIANGLES、GL_TRIANGLE_STRIP或GL_TRIANGLE_FAN(3)
  • triangles_adjacency:GL_TRIANGLES_ADJACENCY或GL_TRIANGLE_STRIP_ADJACENCY(6)

以上是能提供给glDrawArrays渲染函数的几乎所有图元了。如果我们想要将顶点绘制为GL_TRIANGLES,我们就要将输入修饰符设置为triangles。括号内的数字表示的是一个图元所包含的最小顶点数。

接下来,我们还需要指定几何着色器输出的图元类型,这需要在out关键字前面加一个布局修饰符。和输入布局修饰符一样,输出布局修饰符也可以接受几个图元值:

  • points
  • line_strip
  • triangle_strip

有了这3个输出修饰符,我们就可以使用输入图元创建几乎任意的形状了。要生成一个三角形的话,我们将输出定义为triangle_strip,并输出3个顶点。

几何着色器同时希望我们设置一个它最大能够输出的顶点数量(如果你超过了这个值,OpenGL将不会绘制多出的顶点),这个也可以在out关键字的布局修饰符中设置。在这个例子中,我们将输出一个line_strip,并将最大顶点数设置为2个。

如果你不知道什么是线条(Line Strip):线条连接了一组点,形成一条连续的线,它最少要由两个点来组成。在渲染函数中每多加一个点,就会在这个点与前一个点之间形成一条新的线。在下面这张图中,我们有5个顶点:

如果使用的是上面定义的着色器,那么这将只能输出一条线段,因为最大顶点数等于2。

为了生成更有意义的结果,我们需要某种方式来获取前一着色器阶段的输出。GLSL提供给我们一个内建(Built-in)变量,在内部看起来(可能)是这样的:

in gl_Vertex
{
    vec4  gl_Position;
    float gl_PointSize;
    float gl_ClipDistance[];
} gl_in[];

这里,它被声明为一个接口块(Interface Block,我们在上一节已经讨论过),它包含了几个很有意思的变量,其中最有趣的一个是gl_Position,它是和顶点着色器输出非常相似的一个向量。

要注意的是,它被声明为一个数组,因为大多数的渲染图元包含多于1个的顶点,而几何着色器的输入是一个图元的所有顶点。

有了之前顶点着色器阶段的顶点数据,我们就可以使用2个几何着色器函数,EmitVertex和EndPrimitive,来生成新的数据了。几何着色器希望你能够生成并输出至少一个定义为输出的图元。在我们的例子中,我们需要至少生成一个线条图元。

void main() {
    gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0); 
    EmitVertex();

    gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);
    EmitVertex();

    EndPrimitive();
}

每次我们调用EmitVertex时,gl_Position中的向量会被添加到图元中来。当EndPrimitive被调用时,所有发射出的(Emitted)顶点都会合成为指定的输出渲染图元。在一个或多个EmitVertex调用之后重复调用EndPrimitive能够生成多个图元。在这个例子中,我们发射了两个顶点,它们从原始顶点位置平移了一段距离,之后调用了EndPrimitive,将这两个顶点合成为一个包含两个顶点的线条。

现在你(大概)了解了几何着色器的工作方式,你可能已经猜出这个几何着色器是做什么的了。它接受一个点图元作为输入,以这个点为中心,创建一条水平的线图元。如果我们渲染它,看起来会是这样的:

目前还并没有什么令人惊叹的效果,但考虑到这个输出是通过调用下面的渲染函数来生成的,它还是很有意思的:

glDrawArrays(GL_POINTS, 0, 4);

虽然这是一个比较简单的例子,它的确向你展示了如何能够使用几何着色器来(动态地)生成新的形状。在之后我们会利用几何着色器创建出更有意思的效果,但现在我们仍将从创建一个简单的几何着色器开始。

使用几何着色器

为了展示几何着色器的用法,我们将会渲染一个非常简单的场景,我们只会在标准化设备坐标的z平面上绘制四个点。这些点的坐标是:

float points[] = {
    -0.5f,  0.5f, // 左上
     0.5f,  0.5f, // 右上
     0.5f, -0.5f, // 右下
    -0.5f, -0.5f  // 左下
};

顶点着色器只需要在z平面绘制点就可以了,所以我们将使用一个最基本顶点着色器:

#version 330 core
layout (location = 0) in vec2 aPos;

void main()
{
    gl_Position = vec4(aPos.x, aPos.y, 0.0, 1.0); 
}

直接在片段着色器中硬编码,将所有的点都输出为绿色:

#version 330 core
out vec4 FragColor;

void main()
{
    FragColor = vec4(0.0, 1.0, 0.0, 1.0);   
}

为点的顶点数据生成一个VAO和一个VBO,然后使用glDrawArrays进行绘制:

shader.use();
glBindVertexArray(VAO);
glDrawArrays(GL_POINTS, 0, 4);

结果是在黑暗的场景中有四个(很难看见的)绿点:

但我们之前不是学过这些吗?是的,但是现在我们将会添加一个几何着色器,为场景添加活力。

出于学习目的,我们将会创建一个传递(Pass-through)几何着色器,它会接收一个点图元,并直接将它传递(Pass)到下一个着色器:

#version 330 core
layout (points) in;
layout (points, max_vertices = 1) out;

void main() {    
    gl_Position = gl_in[0].gl_Position; 
    EmitVertex();
    EndPrimitive();
}

现在这个几何着色器应该很容易理解了,它只是将它接收到的顶点位置不作修改直接发射出去,并生成一个点图元。

和顶点与片段着色器一样,几何着色器也需要编译和链接,但这次在创建着色器时我们将会使用GL_GEOMETRY_SHADER作为着色器类型:

geometryShader = glCreateShader(GL_GEOMETRY_SHADER);
glShaderSource(geometryShader, 1, &gShaderCode, NULL);
glCompileShader(geometryShader);  
...
glAttachShader(program, geometryShader);
glLinkProgram(program);

着色器编译的代码和顶点与片段着色器代码都是一样的。记得要检查编译和链接错误!

如果你现在编译并运行程序,会看到和下面类似的结果:

这和没使用几何着色器时是完全一样的!我承认这是有点无聊,但既然我们仍然能够绘制这些点,所以几何着色器是正常工作的,现在是时候做点更有趣的东西了!

造几个房子

绘制点和线并没有那么有趣,所以我们会使用一点创造力,利用几何着色器在每个点的位置上绘制一个房子。要实现这个,我们可以将几何着色器的输出设置为triangle_strip,并绘制三个三角形:其中两个组成一个正方形,另一个用作房顶。

OpenGL中,三角形带(Triangle Strip)是绘制三角形更高效的方式,它使用顶点更少。在第一个三角形绘制完之后,每个后续顶点将会在上一个三角形边上生成另一个三角形:每3个临近的顶点将会形成一个三角形。如果我们一共有6个构成三角形带的顶点,那么我们会得到这些三角形:(1, 2, 3)、(2, 3, 4)、(3, 4, 5)和(4, 5, 6),共形成4个三角形。一个三角形带至少需要3个顶点,并会生成N-2个三角形。使用6个顶点,我们创建了6-2 = 4个三角形。下面这幅图展示了这点:

通过使用三角形带作为几何着色器的输出,我们可以很容易创建出需要的房子形状,只需要以正确的顺序生成3个相连的三角形就行了。下面这幅图展示了顶点绘制的顺序,蓝点代表的是输入点:

变为几何着色器是这样的:

#version 330 core
layout (points) in;
layout (triangle_strip, max_vertices = 5) out;

void build_house(vec4 position)
{    
    gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0);    // 1:左下
    EmitVertex();   
    gl_Position = position + vec4( 0.2, -0.2, 0.0, 0.0);    // 2:右下
    EmitVertex();
    gl_Position = position + vec4(-0.2,  0.2, 0.0, 0.0);    // 3:左上
    EmitVertex();
    gl_Position = position + vec4( 0.2,  0.2, 0.0, 0.0);    // 4:右上
    EmitVertex();
    gl_Position = position + vec4( 0.0,  0.4, 0.0, 0.0);    // 5:顶部
    EmitVertex();
    EndPrimitive();
}

void main() {    
    build_house(gl_in[0].gl_Position);
}

这个几何着色器生成了5个顶点,每个顶点都是原始点的位置加上一个偏移量,来组成一个大的三角形带。最终的图元会被光栅化,然后片段着色器会处理整个三角形带,最终在每个绘制的点处生成一个红色房子:

你可以看到,每个房子实际上是由3个三角形组成的——全部都是使用空间中一点来绘制的。这些绿房子看起来是有点无聊,所以我们会再给每个房子分配一个不同的颜色。为了实现这个,我们需要在顶点着色器中添加一个额外的顶点属性,表示颜色信息,将它传递至几何着色器,并再次发送到片段着色器中。

下面是更新后的顶点数据:

float points[] = {
    -0.5f,  0.5f, 1.0f, 0.0f, 0.0f, // 左上
     0.5f,  0.5f, 0.0f, 1.0f, 0.0f, // 右上
     0.5f, -0.5f, 0.0f, 0.0f, 1.0f, // 右下
    -0.5f, -0.5f, 1.0f, 1.0f, 0.0f  // 左下
};

然后我们更新顶点着色器,使用一个接口块将颜色属性发送到几何着色器中:

#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec3 aColor;

out VS_OUT {
    vec3 color;
} vs_out;

void main()
{
    gl_Position = vec4(aPos.x, aPos.y, 0.0, 1.0); 
    vs_out.color = aColor;
}

接下来我们还需要在几何着色器中声明相同的接口块(使用一个不同的接口名):

in VS_OUT {
    vec3 color;
} gs_in[];

因为几何着色器是作用于输入的一组顶点的,从顶点着色器发来输入数据总是会以数组的形式表示出来,即便我们现在只有一个顶点。

我们并不是必须要用接口块来向几何着色器传递数据。如果顶点着色器发送的颜色向量是out vec3 vColor,我们也可以这样写:

in vec3 vColor[];

然而,接口块在几何着色器这样的着色器中会更容易处理一点。实际上,几何着色器的输入能够变得非常大,将它们合并为一个大的接口块数组会更符合逻辑一点。

接下来我们还需要为下个片段着色器阶段声明一个输出颜色向量:

out vec3 fColor;

因为片段着色器只需要一个(插值的)颜色,发送多个颜色并没有什么意义。所以,fColor向量就不是一个数组,而是一个单独的向量。当发射一个顶点的时候,每个顶点将会使用最后在fColor中储存的值,来用于片段着色器的运行。对我们的房子来说,我们只需要在第一个顶点发射之前,使用顶点着色器中的颜色填充fColor一次就可以了。

fColor = gs_in[0].color; // gs_in[0] 因为只有一个输入顶点
gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0);    // 1:左下  
EmitVertex();   
gl_Position = position + vec4( 0.2, -0.2, 0.0, 0.0);    // 2:右下
EmitVertex();
gl_Position = position + vec4(-0.2,  0.2, 0.0, 0.0);    // 3:左上
EmitVertex();
gl_Position = position + vec4( 0.2,  0.2, 0.0, 0.0);    // 4:右上
EmitVertex();
gl_Position = position + vec4( 0.0,  0.4, 0.0, 0.0);    // 5:顶部
EmitVertex();
EndPrimitive();  

所有发射出的顶点都将嵌有最后储存在fColor中的值,即顶点的颜色属性值。所有的房子都会有它们自己的颜色了:

仅仅是为了有趣,我们也可以假装这是冬天,将最后一个顶点的颜色设置为白色,给屋顶落上一些雪。

fColor = gs_in[0].color; 
gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0);    // 1:左下 
EmitVertex();   
gl_Position = position + vec4( 0.2, -0.2, 0.0, 0.0);    // 2:右下
EmitVertex();
gl_Position = position + vec4(-0.2,  0.2, 0.0, 0.0);    // 3:左上
EmitVertex();
gl_Position = position + vec4( 0.2,  0.2, 0.0, 0.0);    // 4:右上
EmitVertex();
gl_Position = position + vec4( 0.0,  0.4, 0.0, 0.0);    // 5:顶部
fColor = vec3(1.0, 1.0, 1.0);
EmitVertex();
EndPrimitive();  

最终结果看起来是这样的:

你可以看到,有了几何着色器,你甚至可以将最简单的图元变得十分有创意。因为这些形状是在GPU的超快硬件中动态生成的,这会比在顶点缓冲中手动定义图形要高效很多。因此,几何缓冲对简单而且经常重复的形状来说是一个很好的优化工具,比如体素(Voxel)世界中的方块和室外草地的每一根草。

爆破物体

尽管绘制房子非常有趣,但我们不会经常这么做。这也是为什么我们接下来要继续深入,来爆破(Explode)物体!虽然这也是一个不怎么常用的东西,但是它能向你展示几何着色器的强大之处。

当我们说爆破一个物体时,我们并不是指要将宝贵的顶点集给炸掉,我们是要将每个三角形沿着法向量的方向移动一小段时间。效果就是,整个物体看起来像是沿着每个三角形的法线向量爆炸一样。爆炸三角形的效果在纳米装模型上看起来像是这样的:

这样的几何着色器效果的一个好处就是,无论物体有多复杂,它都能够应用上去。

因为我们想要沿着三角形的法向量位移每个顶点,我们首先需要计算这个法向量。我们所要做的是计算垂直于三角形表面的向量,仅使用我们能够访问的3个顶点。你可能还记得在变换小节中,我们使用叉乘来获取垂直于其它两个向量的一个向量。如果我们能够获取两个平行于三角形表面的向量a和b,我们就能够对这两个向量进行叉乘来获取法向量了。下面这个几何着色器函数做的正是这个,来使用3个输入顶点坐标来获取法向量:

vec3 GetNormal()
{
   vec3 a = vec3(gl_in[0].gl_Position) - vec3(gl_in[1].gl_Position);
   vec3 b = vec3(gl_in[2].gl_Position) - vec3(gl_in[1].gl_Position);
   return normalize(cross(a, b));
}

这里我们使用减法获取了两个平行于三角形表面的向量a和b。因为两个向量相减能够得到这两个向量之间的差值,并且三个点都位于三角平面上,对任意两个向量相减都能够得到一个平行于平面的向量。注意,如果我们交换了cross函数中a和b的位置,我们会得到一个指向相反方向的法向量——这里的顺序很重要!

既然知道了如何计算法向量了,我们就能够创建一个explode函数了,它使用法向量和顶点位置向量作为参数。这个函数会返回一个新的向量,它是位置向量沿着法线向量进行位移之后的结果:

vec4 explode(vec4 position, vec3 normal)
{
    float magnitude = 2.0;
    vec3 direction = normal * ((sin(time) + 1.0) / 2.0) * magnitude; 
    return position + vec4(direction, 0.0);
}

函数本身应该不是非常复杂。sin函数接收一个time参数,它根据时间返回一个-1.0到1.0之间的值。因为我们不想让物体向内爆炸(Implode),我们将sin值变换到了[0, 1]的范围内。最终的结果会乘以normal向量,并且最终的direction向量会被加到位置向量上。

当使用我们的模型加载器绘制一个模型时,爆破(Explode)效果的完整几何着色器是这样的:

#version 330 core
layout (triangles) in;
layout (triangle_strip, max_vertices = 3) out;

in VS_OUT {
    vec2 texCoords;
} gs_in[];

out vec2 TexCoords; 

uniform float time;

vec4 explode(vec4 position, vec3 normal) { ... }

vec3 GetNormal() { ... }

void main() {    
    vec3 normal = GetNormal();

    gl_Position = explode(gl_in[0].gl_Position, normal);
    TexCoords = gs_in[0].texCoords;
    EmitVertex();
    gl_Position = explode(gl_in[1].gl_Position, normal);
    TexCoords = gs_in[1].texCoords;
    EmitVertex();
    gl_Position = explode(gl_in[2].gl_Position, normal);
    TexCoords = gs_in[2].texCoords;
    EmitVertex();
    EndPrimitive();
}

注意我们在发射顶点之前输出了对应的纹理坐标。

效果:

法向量可视化

在这一部分中,我们将使用几何着色器来实现一个真正有用的例子:显示任意物体的法向量。当编写光照着色器时,你可能会最终会得到一些奇怪的视觉输出,但又很难确定导致问题的原因。光照错误很常见的原因就是法向量错误,这可能是由于不正确加载顶点数据、错误地将它们定义为顶点属性或在着色器中不正确地管理所导致的。我们想要的是使用某种方式来检测提供的法向量是正确的。检测法向量是否正确的一个很好的方式就是对它们进行可视化,几何着色器正是实现这一目的非常有用的工具。

思路是这样的:我们首先不使用几何着色器正常绘制场景。然后再次绘制场景,但这次只显示通过几何着色器生成法向量。几何着色器接收一个三角形图元,并沿着法向量生成三条线——每个顶点一个法向量。伪代码看起来会像是这样:

shader.use();
DrawScene();
normalDisplayShader.use();
DrawScene();

这次在几何着色器中,我们会使用模型提供的顶点法线,而不是自己生成,为了适配(观察和模型矩阵的)缩放和旋转,我们在将法线变换到观察空间坐标之前,先使用法线矩阵变换一次(几何着色器接受的位置向量是观察空间坐标,所以我们应该将法向量变换到相同的空间中)。这可以在顶点着色器中完成:

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;

out VS_OUT {
    vec3 normal;
} vs_out;

uniform mat4 view;
uniform mat4 model;

void main()
{
    gl_Position = view * model * vec4(aPos, 1.0); 
    mat3 normalMatrix = mat3(transpose(inverse(view * model)));
    vs_out.normal = normalize(vec3(vec4(normalMatrix * aNormal, 0.0)));
}

变换后的观察空间法向量会以接口块的形式传递到下个着色器阶段。接下来,几何着色器会接收每一个顶点(包括一个位置向量和一个法向量),并在每个位置向量处绘制一个法线向量:

#version 330 core
layout (triangles) in;
layout (line_strip, max_vertices = 6) out;

in VS_OUT {
    vec3 normal;
} gs_in[];

const float MAGNITUDE = 0.4;

uniform mat4 projection;

void GenerateLine(int index)
{
    gl_Position = projection * gl_in[index].gl_Position;
    EmitVertex();
    gl_Position = projection * (gl_in[index].gl_Position + 
                                vec4(gs_in[index].normal, 0.0) * MAGNITUDE);
    EmitVertex();
    EndPrimitive();
}

void main()
{
    GenerateLine(0); // 第一个顶点法线
    GenerateLine(1); // 第二个顶点法线
    GenerateLine(2); // 第三个顶点法线
}

像这样的几何着色器应该很容易理解了。注意我们将法向量乘以了一个MAGNITUDE向量,来限制显示出的法向量大小(否则它们就有点大了)。

因为法线的可视化通常都是用于调试目的,我们可以使用片段着色器,将它们显示为单色的线(如果你愿意也可以是非常好看的线):

#version 330 core
out vec4 FragColor;

void main()
{
    FragColor = vec4(1.0, 1.0, 0.0, 1.0);
}

现在,首先使用普通着色器渲染模型,再使用特别的法线可视化着色器渲染,你将看到这样的效果:

尽管我们的纳米装现在看起来像是一个体毛很多而且带着隔热手套的人,它能够很有效地帮助我们判断模型的法线是否正确。你可以想象到,这样的几何着色器也经常用于给物体添加毛发(Fur)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1528396.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

入门:Vue全家桶都有谁,分别肩负什么责任?

当使用Vue.js开发项目时,通常会使用Vue全家桶来提供完整的开发工具和功能。以下是Vue全家桶的各个部分的详细介绍: 项目构建工具 - Vue-cli: Vue-cli是Vue.js官方提供的脚手架工具,可以快速生成一个Vue.jswebpack的项目模板。它提…

【机器学习-01】机器学习基本概念与建模流程

机器学习的过程本质上是一个不断通过数据训练来提升模型在对应评估指标上表现的过程。在此过程中,为模型提供有效的反馈并基于这些反馈进行持续的调整是至关重要的。只有当这个过程顺利进行时,模型才能得到有效的训练,机器才能真正实现学习。…

nodejs基于vue大学生健身爱好者交流网站flask-django-php

任何系统都要遵循系统设计的基本流程,本系统也不例外,同样需要经过市场调研,需求分析,概要设计,详细设计,编码,测试这些步骤,基于python技术、django/flask框架、B/S机构、Mysql数据…

边缘计算网关能够解决企业数改中哪些问题?-天拓四方

随着工业4.0时代的到来,数字化转型已经成为工业企业发展的必然趋势。在这一过程中,边缘计算网关以其独特的优势,正逐渐成为工业企业实现智能化、高效化运营的关键技术。 边缘计算网关是一种部署在网络边缘的设备,它集成了计算、存…

从自动化到测开,测试人员逆袭之路从此起步!

在当今竞争激烈的软件测试行业中,近期的招聘市场确实面临一些挑战。大量的求职者争相涌入岗位,许多热衷于功能测试的人士甚至难以找到理想的工作机会。更不幸的是,连自动化测试和性能测试这些专业领域也受到了测试开发人员的竞争压力。然而&a…

Linux 常见驱动框架

一、V4L2驱动框架 v4l2驱动框架主要对象: (1)video_device:一个字符设备,为用户空间提供设备节点(/dev/videox),提供系统调用的相关操作(open、ioctl…) (2)v4l2_device&#xff1a…

QT中dumpcpp以及dumpdoc使用

qt中调用COM的方式方法有四种,参考解释在 Qt 中使用 ActiveX 控件和 COM (runebook.dev) 介绍dumpcpp的使用方法Qt - dumpcpp 工具 (ActiveQt) (runebook.dev): 在安装好了的qt电脑上,通过powershell窗口来实现,powershell比cmd要…

融云:TikTok背水一战,出海应用「用户被遗忘权」保护需升级

TikTok开启全面反击了。 针对美国众议院投票通过法案“强制要求TikTok在165天内剥离母公司字节跳动,否则TikTok将在美国的应用商店下架”这一晴天霹雳,TikTok近日采取了弹窗动员策略,号召用户共同应对挑战。 事实上,从TikTok仅用…

xss.pwnfunction(DOM型XSS)靶场

环境进入该网站 Challenges (pwnfunction.com) 第一关&#xff1a;Ma Spaghet! 源码&#xff1a; <!-- Challenge --> <h2 id"spaghet"></h2> <script>spaghet.innerHTML (new URL(location).searchParams.get(somebody) || "Somebo…

关于大规模电商平台商品数据采集的技术难点分析与批量采集封装API接口

电商数据采集要注意哪些点&#xff1f; 首先是采集平台&#xff0c;是否可以覆盖主流的电商平台&#xff0c;如淘宝、天猫、京东、拼多多等&#xff0c;其次是覆盖程度&#xff0c;是否可对平台中的多个字段进行采集&#xff0c;如价格、销量、促销信息&#xff0c;最后是采集…

实地研究降本增效的杀伤力,LSTM算法实现全国失业率分析预测

前言 ​ 降本增效降本增笑&#xff1f;增不增效暂且不清楚&#xff0c;但是这段时间大厂的产品频繁出现服务器宕机和产品BUG确实是十分增笑。目前来看降本增效这一理念还会不断渗透到各行各业&#xff0c;不单单只是互联网这块了&#xff0c;那么对于目前就业最为严峻的一段时…

Excel xlsx file:not supported

报错信息&#xff1a; 原因&#xff1a; Excel和xlrd版本不匹配 解决措施&#xff1a; 降低xlrd版本或Excel版本 方法一&#xff1a; 1) 先卸载了原来的版本&#xff1a;uninstal xlrd 2) 安装新的低版本xlrd模块pip install xlrd1.2.0 方法二&#xff1a; 1&#xff09…

数据结构之带头双向链表(易学版)

目录 1.问题引入 2.结构实现 2.3.1接口实现 2.3.2函数实现 3.总结 &#xff0c;又和大家见面了&#xff0c;今天要给大家分享的是双链表的知识&#xff0c;跟着我的脚步&#xff0c;包学包会哦~ 规矩不乱&#xff0c;先赞后看&#xff01; ps&#xff1a;&#xff08;孙…

Tortoisegit 免密配置

TortoiseGit的免密配置通常涉及公钥和私钥的使用&#xff0c;以及通过配置来避免在每次操作时需要输入密码。以下是具体的配置步骤&#xff1a; 1、生成私钥&#xff1a; 首先&#xff0c;使用PuTTYgen生成私钥。你可以在“开始”菜单中找到TortoiseGit文件夹&#xff0c;并在…

AVP-SLAM:自动泊车系统中的语义SLAM_

AVP-SLAM&#xff1a;自动泊车系统中的语义SLAM 附赠最强自动驾驶学习资料&#xff1a;直达链接 ●论文摘要 在自动代客泊车系统中车辆在狭窄且拥挤且没有GPS信号的停车场中进行导航&#xff0c;具备准确的定位能力是至关重要的。传统的基于视觉的方法由于在停车场中由于缺少…

爬虫逆向实战(36)-某建设监管平台(RSA,魔改)

一、数据接口分析 主页地址&#xff1a;某建设监管平台 1、抓包 通过抓包可以发现网站首先是请求了一个/prod-api/mohurd-pub/vcode/genVcode的接口&#xff0c;用于获取滑块验证码的图片 滑块验证之后&#xff0c;请求了/prod-api/mohurd-pub/dataServ/findBaseEntDpPage这…

Git——标签详解

目录 Git标签1、概述1.1、标签是什么1.2、什么时候使用标签1.3、标签的分类 2、轻量标签&#xff08;lightweight tag&#xff09;3、有附注的标签&#xff08;annotated tag&#xff09;4、两种标签的区别5、删除标签 Git标签 1、概述 1.1、标签是什么 在Git中&#xff0c;…

解决Anaconda环境下利用gradio启动web页面生成的链接报错Could not create share link

一、错误信息 启动web页面生成了地址&#xff0c;但是在网页中无法访问&#xff1a; 二、解决方法 在报错的同时也给我们指出了解决方法&#xff1a; Please check your internet connection. This can happen if your antivirus software blocks the download of this fi…

搭建Hadoop集群(完全分布式运行模式)

目录 一、准备模板机(最小化安装)二、配置一台纯净的模板机修改主机名固定IP地址通过yum安装方式安装必要的软件关闭防火墙且禁止自启修改hosts映射文件创建普通用户 并让他能用sudo命令在/opt下创建software和module完成 三、搭建完全分布式运行模式3.1克隆第一台机器hadoop10…

2024-3-18-C++day6作业

1>思维导图 2>试编程 要求: 封装一个动物的基类&#xff0c;类中有私有成员&#xff1a;姓名&#xff0c;颜色&#xff0c;指针成员年纪 再封装一个狗这样类&#xff0c;共有继承于动物类&#xff0c;自己拓展的私有成员有&#xff1a;指针成员&#xff1a;腿的个数&a…