【C++】手撕AVL树

news2024/11/15 17:36:46

> 作者简介:დ旧言~,目前大二,现在学习Java,c,c++,Python等
> 座右铭:松树千年终是朽,槿花一日自为荣。

> 目标:能直接手撕AVL树。

> 毒鸡汤:放弃自己,相信别人,这就是失败的原因。

> 望小伙伴们点赞👍收藏✨加关注哟💕💕 

🌟前言  

相信大家肯定听过在C++大名鼎鼎的两颗树,这两颗树分别是AVL树和红黑树,学过的小伙伴听到都是瑟瑟发抖,像一些大厂中可能会考手撕AVL树或红黑树。学习这两棵树确实难度很大,正所谓难度越大动力就越大,那本篇我们学习这两棵树的一颗树--AVL树。

⭐主体

学习AVL树咱们按照下面的图解:

🌙AVL树的概念

在计算机科学中,AVL树是最早被发明的自平衡二叉查找树。在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下的时间复杂度都是O(logn)。

AVL树的定义

  • 一棵空的树是AVL树
  • 如果T是一棵非空的二叉树,T(L)和T(R)分别是其左子树高和右子树高,那么当T满足以下条件时,T是一棵AVL树,|h(L)-h(R)|<=1,其中h(L)和h(R)分别是T(L)和T(R)的高(简称平衡因子)

AVL树的状态:

AVL树的特性:

  • 一棵n个元素的AVL树,其高度是O(logn)
  • 对于每一个n,n>=0,都存在一棵AVL树
  • 对一棵n元素的AVL搜索树,在O(高度)=O(logn)的时间内可以完成查找
  • 将一个新元素插入一棵n元素的AVL搜索树中,可以得到一棵n+1个元素的AVL树,而且插入用时为O(logn)
  • 一个元素从一棵n元素的AVL搜索树中删除,可以得到一棵n-1个元素的AVL树,而且删除用时为O(logn)

🌙AVL树的结点

  • 按照 KV 模型来构造 AVL 树,需要把结点定义为 三叉链结构(左、右、父)。
  • 构造函数,由于新构造结点的左右子树均为空树,所以将新构造结点的平衡因子初始设置为 0 。

代码示例:

// 创建AVL树的结点
template<class K,class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;  // 左子树
	AVLTreeNode<K, V>* _right; // 右子树
	AVLTreeNode<K, V>* _parent;// 父亲结点

	pair<K, V> _kv; // 存储的键值对
	int _bf;       // 平衡因子(右子树高度 - 左子树高度)

	// 构造函数
	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}
};

🌙AVL树的插入

其实AVL树插入操作,本质上比二叉搜索树的插入操作多了一个平衡操作

  1. 按照二叉搜索树的方式,找到待插入的位置,然后将新结点插入到该位置。
  2. 调整节点的平衡因子,如果出现不平衡,则需要进行旋转。

当 AVL 树插入一个新结点以后,需要更新插入结点的祖先的平衡因子,因为新结点(也就是叶子结点)的平衡因子为 0,但是它影响的是它的父亲,它父亲的父亲…,所以要更新到祖先结点。

上面的图就需要改变父亲爷爷的平衡因子,我们知道,树的状态有很多,无法穷举,但是我们也有规律可寻,这个规律就在于我们的平衡因子,所以我总结如下:

  • 如果新增结点插入在 parent 的右边,只需要给 parent 的平衡因子 +1 即可
  • 如果新增结点插入在 parent 的左边,只需要给 parent 的平衡因子 -1 即可

当 parent 的平衡因子更新完以后,可能出现三种情况:0,正负 1,正负 2。

(1)parent 的平衡因子为 0

如果parent的平衡因子是0:说明之前parent的平衡因子是1或-1,说明之前parent一边高、一边低;这次插入之后填入矮的那边,parent所在的子树高度不变,不需要继续往上更新。如图:

(2)如果 parent 的平衡因子为正负 1

如果parent的平衡因子是1或者-1:说明之前parent的平衡因子是0,两边一样高,插入之后一边更高,parent所在的子树高度发生变化,继续往上更新

①parent为1

②parent为 -1

(3)如果 parent 的平衡因子为正负 2

平衡因子是2或-2,说明之前parent的平衡因子是1或-1,现在插入严重不平衡,违反规则,需要进行旋转处理

  • 如果parent的平衡因子是2,cur的平衡因子是1时,说明右边的右边比较高,我们需要进行左单旋
  • 如果parent的平衡因子是-2,cur的平衡因子是-1时,说明左边的左边比较高,我们需要进行右单旋
  • 如果parent的平衡因子是-2,cur的平衡因子是1时,我们需要进行左右双旋
  • 如果parent的平衡因子是2,cur的平衡因子是-1时,我们需要进行右左双旋

这里我们就举一个栗子:

代码实现:

public:
	// 插入函数
	bool Insert(const pair<K, V>& kv)
	{
		// 如果AVL树是空树,把插入节点直接作为根节点
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_bf = 0;
			return true;
		}

		// 1.按照二叉搜索树的规则插入
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first) // 待插入节点的key值大于当前节点的key值
			{
				// 往右子树走
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first) // 待插入节点的key值小于当前节点的key值
			{
				// 往左子树走
				parent = cur; 
				cur = cur->_left;
			}
			else // 待插入节点的key值等于当前节点的key值
			{
				return false; // 插入失败,返回false
			}
		}

		// 2.当循环结束,说明cur找到了空的位置,那么就插入
		cur = new Node(kv); // 构造一个新节点
		if (parent->_kv.first < kv.first) // 如果新节点的key值大于当前parent节点的key值
		{
			// 就把新节点链接到parent的右边
			parent->_right = cur;
		}
		else // 如果新节点的key值小于当前parent节点的key值
		{
			// 就把新节点链接到parent的左边
			parent->_left = cur;
		}
		cur->_parent = parent; // 别忘了把新节点里面的_parent指向parent(因为我们定义的是一个三叉链)

		// 3.更新平衡因子,如果出现不平衡,则需要进行旋转
		while (parent) // 最远要更新到根节点去
		{
			if (cur == parent->_right) // 如果cur插在parent的右边,说明parent的右子树增高
			{
				parent->_bf++; // 那么parent的平衡因子要++
			}
			else // 如果cur插在parent的左边,说明parent的左子树增高
			{
				parent->_bf--; // 那么parent的平衡因子要--
			}

			// 判断是否更新结束,或者是否需要进行旋转
			if (parent->_bf == 0) // 如果parent的bf等于0,说明左右子树高度一致,就更新结束(原因是新插入的节点把parent左右子树中矮的那一边给填补了)
			{
				// 高度不变,更新结束
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1) // 继续往上更新平衡因子(插入节点导致某一边变高了,说明parent所在的子树高度改变了)
			{
				// 子树的高度变了,就要继续往上更新祖先
				cur = cur->_parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2) // 说明插入节点导致本来高的一边又变高了,子树不平衡了,那么此时需要做旋转处理
			{
				// 旋转的四种处理方式
				// 1.左单旋
				// 2.右单旋
				// 3.左右双旋
				// 4.右左双旋
				
				// 旋转完成,跳出
				break;
			}
			else
			{
				// 如果程序走到了这里,说明在插入节点之前AVL树就存在不平衡的子树,也就是存在平衡因子 >= 2的节点
				// 所以这里加一个断言进行处理
				assert(false);
			}
		}
		// 插入成功,返回true
		return true;
	}

🌙AVL树的旋转

在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,采用不同的旋转方法。

AVL树的旋转分为四种:

  • 左单旋(LL)
  • 右单旋(RR)
  • 左右双旋(LR)
  • 右左双旋(RL)

旋转规则:

  • 让这颗子树左右高度差不超过1
  • 旋转过程中继续保持它是搜索树
  • 更新调整孩子节点的平衡因子
  • 让这颗子树的高度根插入前保持一致

💫左单旋

左单旋的步骤如下:

  • 先让 subR 的左子树(subRL)作为 parent 的右子树。
  • 然后让 parent 作为 subR 的左子树。
  • 接下来让 subR 作为整个子树的根。
  • 最后更新平衡因子

我们就以下面的抽象图来看看左单旋如何实现:

代码示例:


	// 左单旋(右边高需要左单旋)
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* ppNode = parent->_parent; // 先保存parent的parent

		// 1.建立parent和subRL之间的关系
		parent->_right = subRL;
		if (subRL) // 如果subRL节点不为空,那么要更新它的parent
		{
			subRL->_parent = parent;
		}

		// 2.建立subR和parent之间的关系
		subR->_left = parent;
		parent->_parent = subR;

		// 3.建立ppNode和subR之间的关系(分情况讨论parent是整颗树的根,还是局部子树)
		if (parent == _root) // 当parent是根节点时
		{
			_root = subR; // subR就变成了新的根节点
			_root->_parent = nullptr; // 根节点的的parent为空
		}
		else // 当parent是整个树的局部子树时
		{
			if (parent == ppNode->_left) // 如果parent在ppNode的左边
			{
				ppNode->_left = subR; // 那么subR就是parent的左子树
			}
			else // 如果parent在ppNode的右边
			{
				ppNode->_right = subR; // 那么subR就是parent的右子树
			}
			subR->_parent = ppNode; // subR的parent还要指向ppNode
		}

		// 更新平衡因子
		parent->_bf = 0;
		subR->_bf = 0;
	}

💫右单旋

右单旋的步骤如下:

  • 先让 subL 的右子树(subLR)作为 parent 的左子树。
  • 然后让 parent 作为 subL 的右子树。
  • 接下来让 subL 作为整个子树的根。
  • 最后更新平衡因子。

我们就以下面的抽象图来看看右单旋如何实现:

代码示例:


	// 右单旋(左边高就右单旋)
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left; 
		Node* subLR = subL->_right;
		Node* ppNode = parent->_parent;

		// 1.建立parent和subLR之间的关系
		parent->_left = subLR;
		if (subLR) // 如果subLR节点不为空,那么要更新它的parent
		{
			subLR->_parent = parent;
		}
		 
		// 2.建立subL和parent之间的关系
		subL->_right = parent;
		parent->_parent = subL;

		// 3.建立ppNode和subL之间的关系(分情况讨论parent是整颗树的根,还是局部子树)
		if (parent == _root) // 当parent是根节点时
		{
			_root = subL; // subL就变成了新的根节点
			_root->_parent = nullptr; // 根节点的的parent为空
		}
		else // 当parent是整个树的局部子树时
		{
			if (parent == ppNode->_left) // 如果parent在ppNode的左边
			{
				ppNode->_left = subL; // 那么subL就是parent的左子树
			}
			else // 如果parent在ppNode的右边
			{
				ppNode->_right = subL; // 那么subL就是parent的右子树
			}
			subL->_parent = ppNode; // subR的parent还要指向ppNode
		}
		// 更新平衡因子
		parent->_bf = 0;
		subL->_bf = 0;
	}

💫左右单旋

左右单旋的步骤如下:

  • 先以 subL 为旋转点进行左单旋。
  • 然后以 parent 为旋转点进行右单旋。
  • 最后再更新平衡因子。

我们就以下面的抽象图来看看左右单旋如何实现:

再次分类讨论:

(1)当 subLR 原始平衡因子是 -1 时,左右双旋后 parent、subL、subLR 的平衡因子分别更新为 1、0、0

(2)当 subLR 原始平衡因子是 1 时,左右双旋后 parent、subL、subLR 的平衡因子分别更新为 0、-1、0

(3)当 subLR 原始平衡因子是 0 时(说明 subLR 为新增结点),左右双旋后 parent、subL、subLR 的平衡因子分别更新为0、0、0

代码示例:


// 左右双旋(先左单旋,再右单旋)
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		// 1.先以subL为旋转点进行左单旋
		RotateL(parent->_left);

		// 2.再以parent为旋转点进行右单旋
		RotateR(parent);

		// 3.更新平衡因子
		if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 1;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			// 如果走到了这里,说明subLR的平衡因子在旋转前就有问题
			assert(false);
		}
	}

💫右左单旋

右左单旋的步骤如下:

  • 先以 subR 为旋转点进行右单旋。
  • 然后以 parent 为旋转点进行左单旋。
  • 最后再更新平衡因子。

我们就以下面的抽象图来看看右左单旋如何实现:

再次分类讨论:

(1)当 subRL 原始平衡因子是 1 时,左右双旋后 parent、subR、subRL 的平衡因子分别更新为 -1、0、0

(2)当 subRL 原始平衡因子是 -1 时,左右双旋后 parent、subR、subRL 的平衡因子分别更新为 0、1、0

(3)当 subRL 原始平衡因子是 0 时(说明 subRL为新增结点),左右双旋后 parent、subR、subRL 的平衡因子分别更新为0、0、0

代码示例:


	// 右左双旋(先右单旋,再左单旋)
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		// 1.先以subR为旋转点进行右单旋
		RotateR(parent->_right);

		// 2.再以parent为旋转点进行左单旋
		RotateL(parent);

		// 3.更新平衡因子
		if (bf == 0)
		{
			subRL->_bf = 0;
			parent->_bf = 0;
			subR->_bf = 0;
		}
		else if (bf == 1)
		{
			subRL->_bf = 0;
			parent->_bf = -1;
			subR->_bf = 0;
		}
		else if (bf == -1)
		{
			subRL->_bf = 0;
			parent->_bf = 0;
			subR->_bf = 1;
		}
		else
		{
			// 如果走到了这里,说明subRL的平衡因子在旋转前就有问题
			assert(false);
		}
	}

🌙AVL树的删除

这里的删除过于复杂,我这里就直接上代码了,如果对这里感兴趣的小伙伴们可以查阅资料。

// 删除函数
	bool Erase(const K& key)
	{
		//用于遍历二叉树
		Node* parent = nullptr;
		Node* cur = _root;
		//用于标记实际的删除结点及其父结点
		Node* delParentPos = nullptr;
		Node* delPos = nullptr;
		while (cur)
		{
			if (key < cur->_kv.first) //所给key值小于当前结点的key值
			{
				//往该结点的左子树走
				parent = cur;
				cur = cur->_left;
			}
			else if (key > cur->_kv.first) //所给key值大于当前结点的key值
			{
				//往该结点的右子树走
				parent = cur;
				cur = cur->_right;
			}
			else //找到了待删除结点
			{
				if (cur->_left == nullptr) //待删除结点的左子树为空
				{
					if (cur == _root) //待删除结点是根结点
					{
						_root = _root->_right; //让根结点的右子树作为新的根结点
						if (_root)
							_root->_parent = nullptr;
						delete cur; //删除原根结点
						return true; //根结点无祖先结点,无需进行平衡因子的更新操作
					}
					else
					{
						delParentPos = parent; //标记实际删除结点的父结点
						delPos = cur; //标记实际删除的结点
					}
					break; //删除结点有祖先结点,需更新平衡因子
				}
				else if (cur->_right == nullptr) //待删除结点的右子树为空
				{
					if (cur == _root) //待删除结点是根结点
					{
						_root = _root->_left; //让根结点的左子树作为新的根结点
						if (_root)
							_root->_parent = nullptr;
						delete cur; //删除原根结点
						return true; //根结点无祖先结点,无需进行平衡因子的更新操作
					}
					else
					{
						delParentPos = parent; //标记实际删除结点的父结点
						delPos = cur; //标记实际删除的结点
					}
					break; //删除结点有祖先结点,需更新平衡因子
				}
				else //待删除结点的左右子树均不为空
				{
					//替换法删除
					//寻找待删除结点右子树当中key值最小的结点作为实际删除结点
					Node* minParent = cur;
					Node* minRight = cur->_right;
					while (minRight->_left)
					{
						minParent = minRight;
						minRight = minRight->_left;
					}
					cur->_kv.first = minRight->_kv.first; //将待删除结点的key改为minRight的key
					cur->_kv.second = minRight->_kv.second; //将待删除结点的value改为minRight的value
					delParentPos = minParent; //标记实际删除结点的父结点
					delPos = minRight; //标记实际删除的结点
					break; //删除结点有祖先结点,需更新平衡因子
				}
			}
		}
		if (delParentPos == nullptr) //delParentPos没有被修改过,说明没有找到待删除结点
		{
			return false;
		}

		//记录待删除结点及其父结点(用于后续实际删除)
		Node* del = delPos;
		Node* delP = delParentPos;

		//更新平衡因子
		while (delPos != _root) //最坏一路更新到根结点
		{
			if (delPos == delParentPos->_left) //delParentPos的左子树高度降低
			{
				delParentPos->_bf++; //delParentPos的平衡因子++
			}
			else if (delPos == delParentPos->_right) //delParentPos的右子树高度降低
			{
				delParentPos->_bf--; //delParentPos的平衡因子--
			}
			//判断是否更新结束或需要进行旋转
			if (delParentPos->_bf == 0)//需要继续往上更新平衡因子
			{
				//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子
				delPos = delParentPos;
				delParentPos = delParentPos->_parent;
			}
			else if (delParentPos->_bf == -1 || delParentPos->_bf == 1) //更新结束
			{
				break; //delParent树的高度没有发生变化,不会影响其父结点及以上结点的平衡因子
			}
			else if (delParentPos->_bf == -2 || delParentPos->_bf == 2) //需要进行旋转(此时delParentPos树已经不平衡了)
			{
				if (delParentPos->_bf == -2)
				{
					if (delParentPos->_left->_bf == -1)
					{
						Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点
						RotateR(delParentPos); //右单旋
						delParentPos = tmp; //更新根结点
					}
					else if (delParentPos->_left->_bf == 1)
					{
						Node* tmp = delParentPos->_left->_right; //记录delParentPos左右旋转后新的根结点
						RotateLR(delParentPos); //左右双旋
						delParentPos = tmp; //更新根结点
					}
					else //delParentPos->_left->_bf == 0
					{
						Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点
						RotateR(delParentPos); //右单旋
						delParentPos = tmp; //更新根结点
						//平衡因子调整
						delParentPos->_bf = 1;
						delParentPos->_right->_bf = -1;
						break; //更正
					}
				}
				else //delParentPos->_bf == 2
				{
					if (delParentPos->_right->_bf == -1)
					{
						Node* tmp = delParentPos->_right->_left; //记录delParentPos右左旋转后新的根结点
						RotateRL(delParentPos); //右左双旋
						delParentPos = tmp; //更新根结点
					}
					else if (delParentPos->_right->_bf == 1)
					{
						Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点
						RotateL(delParentPos); //左单旋
						delParentPos = tmp; //更新根结点
					}
					else //delParentPos->_right->_bf == 0
					{
						Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点
						RotateL(delParentPos); //左单旋
						delParentPos = tmp; //更新根结点
						//平衡因子调整
						delParentPos->_bf = -1;
						delParentPos->_left->_bf = 1;
						break; //更正
					}
				}
				//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子
				delPos = delParentPos;
				delParentPos = delParentPos->_parent;
				//break; //error
			}
			else
			{
				assert(false); //在删除前树的平衡因子就有问题
			}
		}
		//进行实际删除
		if (del->_left == nullptr) //实际删除结点的左子树为空
		{
			if (del == delP->_left) //实际删除结点是其父结点的左孩子
			{
				delP->_left = del->_right;
				if (del->_right)
					del->_right->_parent = parent;
			}
			else //实际删除结点是其父结点的右孩子
			{
				delP->_right = del->_right;
				if (del->_right)
					del->_right->_parent = parent;
			}
		}
		else //实际删除结点的右子树为空
		{
			if (del == delP->_left) //实际删除结点是其父结点的左孩子
			{
				delP->_left = del->_left;
				if (del->_left)
					del->_left->_parent = parent;
			}
			else //实际删除结点是其父结点的右孩子
			{
				delP->_right = del->_left;
				if (del->_left)
					del->_left->_parent = parent;
			}
		}
		delete del; //实际删除结点
		return true;
	}

🌙AVL树的遍历

中序是递归遍历(左  根  右),由于涉及到传参,所以需要写一个子函数。

代码实现:

	// 中序遍历
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left); // 走左
		cout << root->_kv.first << "[" << root->_bf << "]" << endl; // 遍历根
		_InOrder(root->_right); // 走右
	}
	void InOrder()
	{
		_InOrder(_root);
	}

🌙AVL树的查找

查找步骤:

  • 若 key 值小于当前结点的值,则应该在该结点的左子树当中进行查找。
  • 若 key 值大于当前结点的值,则应该在该结点的右子树当中进行查找。
  • 若 key 值等于当前结点的值,则查找成功,返回对应结点。

代码实现:

	// 查找元素
	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return NULL;
	}

🌙AVL树的高度

由于涉及到传参,所以需要写一个子函数。

代码实现:

	// 计算树的高度
	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}
	int Height()
	{
		return _Height(_root);
	}

🌙AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分为下面两步:

(1)验证其为二叉搜索树

  • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
​
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

​

(2)验证其为平衡树

  • 每个节点子树高度差的绝对值不超过 1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确

🌙AVL树的高度

//求高度
int Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int lh = Height(root->_left);
		int rh = Height(root->_right);

		return lh > rh ? lh + 1 : rh + 1;
	}
//判断平衡
bool IsBalance(Node* root)
	{
		if (root == nullptr)
		{
			return true;
		}

		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		if (rightHeight - leftHeight != root->_bf)
		{
			cout << root->_kv.first << "平衡因子异常" << endl;
			return false;
		}

		return abs(rightHeight - leftHeight) < 2
			&& IsBalance(root->_left)
			&& IsBalance(root->_right);
	}

🌙AVL树优缺点

优点:

  • 平衡二叉树的优点不言而喻,相对于二叉排序树(BST)而言,平衡二叉树避免了二叉排序树可能出现的最极端情况(斜树)问题,其平均查找的时间复杂度为 O ( l o g N ) O(logN)O(logN)

缺点:

  • 平衡二叉树为了保持平衡,动态进行插入和删除操作的代价也会增加。因此出现了后来的红黑树

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过 1,这样可以保证查询时高效的时间复杂度,即O ( l o g N ) O(logN)O(logN)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

🌙整体代码

#include <iostream>
#include <assert.h>
#include<vector>
#include <time.h>
using namespace std;


// 创建AVL树的结点
template<class K,class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;  // 左子树
	AVLTreeNode<K, V>* _right; // 右子树
	AVLTreeNode<K, V>* _parent;// 父亲结点

	pair<K, V> _kv; // 存储的键值对
	int _bf;       // 平衡因子(右子树高度 - 左子树高度)

	// 构造函数
	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}
};

template<class K,class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	
	// 插入元素
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr) // 如果没有结点
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;

		while (cur) // 采用循环查找要插入的结点
		{
			if (cur->_kv.first < kv.first) // 插入的元素大于cur就走右子树
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first < kv.first) // 插入的元素小于cur就走左子树
			{
				parent = cur;
				cur = cur->_left;
			}
			else
				return false;
		}

		cur = new Node(kv);// 创建一个结点
		
		// 链接
		if (parent->_kv.first < kv.first)
			parent->_right = cur;
		else
			parent->_left = cur;
		
		cur->_parent = parent;

		// 循环判断插入结点的平衡因子和AVL树是否正确
		while (parent)
		{
			// 判断插入的节点在父亲的右边还是左边
			if (cur == parent->_left) // 在左边就父亲平衡因子减一
				parent->_bf--;
			else                     // 在右边就父亲平衡因子加一
				parent->_bf++;

			if (parent->_bf == 0) // 如果父亲的平衡因子为 0 该树就是健康的不用改变
				break;
			else if (parent->_bf == 1 || parent->_bf == -1) // 这时需要向上调整每个节点的平衡因子
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2) // 需要旋转处理
			{
				// 旋转处理
				if (parent->_bf == 2 && cur->_bf == 1) // 左单旋
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1) // 右单旋
				{
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1) // 左右双旋
				{
					RotateLR(parent);
				}
				else  // 右左双旋 
				{
					RotateRL(parent);
				}
				break;
			}
			else
			{
				// 插入之前AVL树就有问题
				assert(false);
			}
		}
	}
	
	// 左单旋
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		subR->_left = parent;
		Node* ppnode = parent->_parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subR;
			}
			else
			{
				ppnode->_right = subR;
			}
			subR->_parent = ppnode;
		}

		parent->_bf = 0;
		subR->_bf = 0;
	}

	// 右单旋
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;

		Node* ppnode = parent->_parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subL;
			}
			else
			{
				ppnode->_right = subL;
			}
			subL->_parent = ppnode;
		}

		subL->_bf = 0;
		parent->_bf = 0;
	}

	// 左右双旋
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		int bf = subLR->_bf;
		RotateL(parent->_left);
		RotateR(parent);

		if (bf == -1)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 1)
		{
			subLR->_bf = 0;
			subL->_bf = -1;
			parent->_bf = 0;
		}
		else if (bf == 0)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

	// 右左双旋
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(subR);
		RotateL(parent);

		subRL->_bf = 0;
		if (bf == 1)
		{
			subR->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
		}
		else
		{
			parent->_bf = 0;
			subR->_bf = 0;
		}
	}

	// 中序遍历
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left); // 走左
		cout << root->_kv.first << "[" << root->_bf << "]" << endl; // 遍历根
		_InOrder(root->_right); // 走右
	}
	void InOrder()
	{
		_InOrder(_root);
	}

	// 计算树的高度
	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}
	int Height()
	{
		return _Height(_root);
	}

	// 判断是否平衡
	bool _IsBalance(Node* root, int& height)
	{
		if (root == nullptr)
		{
			height = 0;
			return true;
		}

		int leftHeight = 0, rightHeight = 0;
		if (!_IsBalance(root->_left, leftHeight)
			|| !_IsBalance(root->_right, rightHeight))
		{
			return false;
		}

		if (abs(rightHeight - leftHeight) >= 2)
		{
			cout << root->_kv.first << "不平衡" << endl;
			return false;
		}

		if (rightHeight - leftHeight != root->_bf)
		{
			cout << root->_kv.first << "平衡因子异常" << endl;
			return false;
		}

		height = leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;

		return true;
	}
	bool IsBalance()
	{
		int height = 0;
		return _IsBalance(_root, height);
	}

	// 计算树的结点个数
	size_t _Size(Node* root)
	{
		if (root == NULL)
			return 0;

		return _Size(root->_left)
			+ _Size(root->_right) + 1;
	}
	size_t Size()
	{
		return _Size(_root);
	}

	// 查找元素
	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < key)
			{
				cur = cur->_right;
			}
			else if (cur->_kv.first > key)
			{
				cur = cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return NULL;
	}

	// 删除函数
	bool Erase(const K& key)
	{
		//用于遍历二叉树
		Node* parent = nullptr;
		Node* cur = _root;
		//用于标记实际的删除结点及其父结点
		Node* delParentPos = nullptr;
		Node* delPos = nullptr;
		while (cur)
		{
			if (key < cur->_kv.first) //所给key值小于当前结点的key值
			{
				//往该结点的左子树走
				parent = cur;
				cur = cur->_left;
			}
			else if (key > cur->_kv.first) //所给key值大于当前结点的key值
			{
				//往该结点的右子树走
				parent = cur;
				cur = cur->_right;
			}
			else //找到了待删除结点
			{
				if (cur->_left == nullptr) //待删除结点的左子树为空
				{
					if (cur == _root) //待删除结点是根结点
					{
						_root = _root->_right; //让根结点的右子树作为新的根结点
						if (_root)
							_root->_parent = nullptr;
						delete cur; //删除原根结点
						return true; //根结点无祖先结点,无需进行平衡因子的更新操作
					}
					else
					{
						delParentPos = parent; //标记实际删除结点的父结点
						delPos = cur; //标记实际删除的结点
					}
					break; //删除结点有祖先结点,需更新平衡因子
				}
				else if (cur->_right == nullptr) //待删除结点的右子树为空
				{
					if (cur == _root) //待删除结点是根结点
					{
						_root = _root->_left; //让根结点的左子树作为新的根结点
						if (_root)
							_root->_parent = nullptr;
						delete cur; //删除原根结点
						return true; //根结点无祖先结点,无需进行平衡因子的更新操作
					}
					else
					{
						delParentPos = parent; //标记实际删除结点的父结点
						delPos = cur; //标记实际删除的结点
					}
					break; //删除结点有祖先结点,需更新平衡因子
				}
				else //待删除结点的左右子树均不为空
				{
					//替换法删除
					//寻找待删除结点右子树当中key值最小的结点作为实际删除结点
					Node* minParent = cur;
					Node* minRight = cur->_right;
					while (minRight->_left)
					{
						minParent = minRight;
						minRight = minRight->_left;
					}
					cur->_kv.first = minRight->_kv.first; //将待删除结点的key改为minRight的key
					cur->_kv.second = minRight->_kv.second; //将待删除结点的value改为minRight的value
					delParentPos = minParent; //标记实际删除结点的父结点
					delPos = minRight; //标记实际删除的结点
					break; //删除结点有祖先结点,需更新平衡因子
				}
			}
		}
		if (delParentPos == nullptr) //delParentPos没有被修改过,说明没有找到待删除结点
		{
			return false;
		}

		//记录待删除结点及其父结点(用于后续实际删除)
		Node* del = delPos;
		Node* delP = delParentPos;

		//更新平衡因子
		while (delPos != _root) //最坏一路更新到根结点
		{
			if (delPos == delParentPos->_left) //delParentPos的左子树高度降低
			{
				delParentPos->_bf++; //delParentPos的平衡因子++
			}
			else if (delPos == delParentPos->_right) //delParentPos的右子树高度降低
			{
				delParentPos->_bf--; //delParentPos的平衡因子--
			}
			//判断是否更新结束或需要进行旋转
			if (delParentPos->_bf == 0)//需要继续往上更新平衡因子
			{
				//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子
				delPos = delParentPos;
				delParentPos = delParentPos->_parent;
			}
			else if (delParentPos->_bf == -1 || delParentPos->_bf == 1) //更新结束
			{
				break; //delParent树的高度没有发生变化,不会影响其父结点及以上结点的平衡因子
			}
			else if (delParentPos->_bf == -2 || delParentPos->_bf == 2) //需要进行旋转(此时delParentPos树已经不平衡了)
			{
				if (delParentPos->_bf == -2)
				{
					if (delParentPos->_left->_bf == -1)
					{
						Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点
						RotateR(delParentPos); //右单旋
						delParentPos = tmp; //更新根结点
					}
					else if (delParentPos->_left->_bf == 1)
					{
						Node* tmp = delParentPos->_left->_right; //记录delParentPos左右旋转后新的根结点
						RotateLR(delParentPos); //左右双旋
						delParentPos = tmp; //更新根结点
					}
					else //delParentPos->_left->_bf == 0
					{
						Node* tmp = delParentPos->_left; //记录delParentPos右旋转后新的根结点
						RotateR(delParentPos); //右单旋
						delParentPos = tmp; //更新根结点
						//平衡因子调整
						delParentPos->_bf = 1;
						delParentPos->_right->_bf = -1;
						break; //更正
					}
				}
				else //delParentPos->_bf == 2
				{
					if (delParentPos->_right->_bf == -1)
					{
						Node* tmp = delParentPos->_right->_left; //记录delParentPos右左旋转后新的根结点
						RotateRL(delParentPos); //右左双旋
						delParentPos = tmp; //更新根结点
					}
					else if (delParentPos->_right->_bf == 1)
					{
						Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点
						RotateL(delParentPos); //左单旋
						delParentPos = tmp; //更新根结点
					}
					else //delParentPos->_right->_bf == 0
					{
						Node* tmp = delParentPos->_right; //记录delParentPos左旋转后新的根结点
						RotateL(delParentPos); //左单旋
						delParentPos = tmp; //更新根结点
						//平衡因子调整
						delParentPos->_bf = -1;
						delParentPos->_left->_bf = 1;
						break; //更正
					}
				}
				//delParentPos树的高度变化,会影响其父结点的平衡因子,需要继续往上更新平衡因子
				delPos = delParentPos;
				delParentPos = delParentPos->_parent;
				//break; //error
			}
			else
			{
				assert(false); //在删除前树的平衡因子就有问题
			}
		}
		//进行实际删除
		if (del->_left == nullptr) //实际删除结点的左子树为空
		{
			if (del == delP->_left) //实际删除结点是其父结点的左孩子
			{
				delP->_left = del->_right;
				if (del->_right)
					del->_right->_parent = parent;
			}
			else //实际删除结点是其父结点的右孩子
			{
				delP->_right = del->_right;
				if (del->_right)
					del->_right->_parent = parent;
			}
		}
		else //实际删除结点的右子树为空
		{
			if (del == delP->_left) //实际删除结点是其父结点的左孩子
			{
				delP->_left = del->_left;
				if (del->_left)
					del->_left->_parent = parent;
			}
			else //实际删除结点是其父结点的右孩子
			{
				delP->_right = del->_left;
				if (del->_left)
					del->_left->_parent = parent;
			}
		}
		delete del; //实际删除结点
		return true;
	}

private:
	Node* _root = nullptr;
};

void TestAVLTree1()
{
	//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	AVLTree<int, int> t;
	for (auto e : a)
	{
		if (e == 14)
		{
			int x = 0;
		}

		t.Insert(make_pair(e, e));
		cout << e << "->" << t.IsBalance() << endl;
	}

	t.InOrder();
	cout << t.IsBalance() << endl;
}

void TestAVLTree2()
{
	const int N = 1000000;
	vector<int> v;
	v.reserve(N);
	srand(time(0));

	for (size_t i = 0; i < N; i++)
	{
		v.push_back(rand() + i);
		//cout << v.back() << endl;
	}

	size_t begin2 = clock();
	AVLTree<int, int> t;
	for (auto e : v)
	{
		t.Insert(make_pair(e, e));
		//cout << "Insert:" << e << "->" << t.IsBalance() << endl;
	}
	size_t end2 = clock();

	cout << "Insert:" << end2 - begin2 << endl;

	cout << t.IsBalance() << endl;

	cout << "Height:" << t.Height() << endl;
	cout << "Size:" << t.Size() << endl;

	size_t begin1 = clock();
	// 确定在的值
	for (auto e : v)
	{
		t.Find(e);
	}

	// 随机值
	for (size_t i = 0; i < N; i++)
	{
		t.Find((rand() + i));
	}

	size_t end1 = clock();

	cout << "Find:" << end1 - begin1 << endl;
}

🌟结束语

       今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1528280.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java安全基础 必备概念理解

Java安全基础 关键概念汇总 文章目录 Java安全基础 关键概念汇总前置知识1.构造器this以及包的使用2.继承3.重写/ 重载 / super4.多态5.区分和equals方法6.toString的使用7.Object的概念8.static,final,代码块static代码块final 9.动态代理10.类的动态加载1)类加载器含义&#…

leetCode刷题 17. 电话号码的字母组合

题目&#xff1a; 给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。 示例 1&#xff1a; 输入&#xff1a;digits "23&q…

操作系统练习-操作系统的基本概念

操作系统的基本概念 ----------------------------------------------------------------------------------------------------------------------------- 1.操作系统是扩充&#xff08; )功能的第一层系统软件 A.软件 B.裸机 C.机器语言 …

opengl日记8-opengl创建三角形

文章目录 环境直接上代码一点小总结参考 环境 系统&#xff1a;ubuntu20.04opengl版本&#xff1a;4.6glfw版本&#xff1a;3.3glad版本&#xff1a;4.6cmake版本&#xff1a;3.16.3gcc版本&#xff1a;10.3.0 直接上代码 CMakeLists.txt cmake_minimum_required(VERSION 2…

STM32CubeIDE基础学习-KEY按键输入实验

STM32CubeIDE基础学习-KEY按键输入实验 文章目录 STM32CubeIDE基础学习-KEY按键输入实验前言第1章 硬件介绍第2章 工程配置2.1 工程外设配置部分2.2 生成工程代码部分 第3章 代码编写第4章 实验现象总结 前言 前面学习了GPIO作为输出功能的实验&#xff0c;现在来学习GPIO作为…

【LIMS】微服务

目录 一、服务解决方案-Spring Cloud Alibaba1.1选用原因&#xff08;基于Spring Cloud Alibaba的试用场景&#xff09;1.2 核心组件使用前期规划 部署 nacos部署 mino使用JavaFreemarker模板引擎&#xff0c;根据XML模板文件生成Word文档使用JavaFlowable 工作流引擎前端 -vue…

C++初阶:string类的模拟自实现

目录 1. 引子2. 自实现string类功能模块3. string类功能模块的具体实现3.1 默认成员函数3.2 遍历访问相关成员函数3.3 信息插入相关成员函数3.4 信息删除3.5 信息查找3.6 非成员函数3.7 杂项成员函数 4. 补充知识 1. 引子 通过对string类的初步学习&#xff0c;没有对知识进行较…

记一次 .NET某施工建模软件 卡死分析

一&#xff1a;背景 1. 讲故事 前几天有位朋友在微信上找到我&#xff0c;说他的软件卡死了&#xff0c;分析了下也不知道是咋回事&#xff0c;让我帮忙看一下&#xff0c;很多朋友都知道&#xff0c;我分析dump是免费的&#xff0c;当然也不是所有的dump我都能搞定&#xff…

旅游行业分析及媒体邀约资源汇总

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 酒店旅游行业分析及媒体邀约资源汇总是两个相对独立但又相互关联的领域。下面将分别对这两个方面进行概述。 酒店旅游行业分析 1. 市场概况 市场规模&#xff1a;评估市场的总价值、增长…

【python】学习笔记04-函数

4.1 函数介绍 1. 函数是&#xff1a; 组织好的、可重复使用的、用来实现特定功能的代码段 2. 使用函数的好处是&#xff1a; • 将功能封装在函数内&#xff0c;可供随时随地重复利用 • 提高代码的复用性&#xff0c;减少重复代码&#xff0c;提高开发效率 4.2 函数的定义 …

视频桥接芯片#LT8912B适用于MIPIDSI转HDMI+LVDS应用方案,提供技术支持。

1. 概述 Lontium LT8912B MIPI DSI 转 LVDS 和 HDMI 桥接器采用单通道 MIPI D-PHY 接收器前端配置&#xff0c;每通道 4 个数据通道&#xff0c;每个数据通道以 1.5Gbps 的速度运行&#xff0c;最大输入带宽高达 6Gbps。 对于屏幕应用&#xff0c;该桥接器可解码 MIPI DSI 18bp…

聚合音乐网-播放器网站源码

源码简介 MKOnlineMusicPlayer 是一款全屏的音乐播放器 UI 框架&#xff08;为避免侵权&#xff0c;已移除所有后端功能&#xff09;。 前端界面参照 QQ 音乐网页版进行布局&#xff0c;同时采用了流行的响应式设计&#xff0c;无论是在PC端还是在手机端&#xff0c;均能给您…

Excel之数据透视表

数据透视&#xff1a;逻辑理解与制作步骤 一、创建数据透视表 1、创建数据透视表&#xff1a;每列必须有表头 &#xff08;1&#xff09;选择要创建数据透视表的数据------插入----选择数据透视表 &#xff08;2&#xff09;选择现有工作表然后点击目标表选择合适的位置插入…

工控机丨工业平板电脑丨工业计算机丨物流行业应用

随着物流业的发展&#xff0c;工控机在物流领域的应用越来越广泛。工控机是指用于控制工业自动化和机器 人技术的计算机&#xff0c;具有高稳定性、高性能和高可靠性等特点。下面将从几个方面介绍工控机在物流行业中的应用。 一、物流信息管理 工控机可以用于物流信息管理&am…

LLM流式方案解决方案和客户端解决方案

背景 接上一篇《LLM大模型统一封装接口解决方案》架构确定后&#xff0c;流式方案非常规请求&#xff0c;需要特殊处理。 本解决方案就是针对上一篇中所需要的流式&#xff08;打字机效果进行编码&#xff09; 什么是SSE SSE&#xff08;Server-Sent Events&#xff0c;服务器发…

【靶机测试--PHOTOGRAPHER: 1【php提权】】

前期准备 靶机下载地址&#xff1a; https://vulnhub.com/entry/photographer-1%2C519/ 信息收集 nmap 扫描同网段 ┌──(root㉿kali)-[/home/test/桌面] └─# nmap -sP 192.168.47.0/24 --min-rate 3333 Starting Nmap 7.92 ( https://nmap.org ) at 2024-03-19 07:37 …

数学建模软件及算法模型典型问题汇总

一、 软件篇 编程、MATLAB&#xff08;物理建模&#xff09;、python&#xff08;数据分析&#xff09;、R、其他&#xff08;SPSS、Stata、Origin&#xff09; 这里其实还有一个 Lingo 软件&#xff0c;不过我不推荐&#xff0c;有更好的替代方案&#xff0c;就是 Yalmip 工…

React的基本使用

安装VSCode插件 ES7 Reactopen in browser React基本使用 基本使用步骤 引入两个JS文件&#xff08; 注意引入顺序 &#xff09; <!-- react库, 提供React对象 --> //本地 <script src"../js/react.development.js"></script> //线上 //<scr…

理解和调试深度学习模型:探索人工智能可解释性方法

关键要点 深度学习模型可能非常复杂&#xff0c;理解其内部原理可能具有挑战性在机器学习中&#xff0c;提供可解释性的方法有多种为了确保这些自动化系统的可靠性&#xff0c;可以使用可解释性工具来深入了解模型的决策过程模型不可知的可解释性工具在不同模型之间是模块化的…

如何判断竞价托管代运营公司或SEM营销优化师水平高低

竞价托管代运营公司或营销优化师的能力评估需要从多个角度来考虑&#xff0c;通常有以下几种评估方式&#xff0c;一般来说&#xff0c;按照遨游建站多年经验来分析评估比较靠谱&#xff0c;对于不懂SEM的人来说也最适合&#xff0c;不需要许多专业的知识&#xff0c;也能判断出…