deepseek-coder模型量化

news2025/1/23 13:04:16

1 简介

DeepSeek-Coder在多种编程语言和各种基准测试中取得了开源代码模型中最先进的性能。

为尝试在开发板进行部署,首先利用llama.cpp对其进行量化。

2 llama.cpp安装

git clone之后进入文件夹make即可,再将依赖补全pip install -r requirements.txt

3 量化

按照GitHub上DeepSeek和llama.cpp官方的信息,后者对deepseek模型的量化目前的支持(进度)还不是很完善。
下面记录一下目前量化出现的问题。

3.1 DeepSeek官方tutorial

依照官方md

git clone https://github.com/DOGEwbx/llama.cpp.git
cd llama.cpp
git checkout regex_gpt2_preprocess

出现error: pathspec 'regex_gpt2_preprocess' did not match any file(s) known to git


# set up the environment according to README
make
python3 -m pip install -r requirements.txt
# generate GGUF model
python convert-hf-to-gguf.py <MODEL_PATH> --outfile <GGUF_PATH> --model-name deepseekcoder

出现convert-hf-to-gguf.py: error: unrecognized arguments: --model-name deepseekcoder

去掉--model-name参数,出现NotImplementedError: Architecture 'LlamaForCausalLM' not supported!,解释。


3.2 convert.py转换

参考这个comment和这个comment,使用convert.py进行转换。
看起来这个修改已经被合并了,浅浅试一下。

python convert.py <MODEL_PATH> --outfile <GGUF_PATH>

出现错误: Exception: Vocab size mismatch (model has 32256, but ../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct has 32022). Add the --pad-vocab option and try again.

详细的log如下

Loading model file ../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct/model.safetensors
params = Params(n_vocab=32256, n_embd=2048, n_layer=24, n_ctx=16384, n_ff=5504, n_head=16, n_head_kv=16, n_experts=None, n_experts_used=None, f_norm_eps=1e-06, rope_scaling_type=<RopeScalingType.LINEAR: 'linear'>, f_rope_freq_base=100000, f_rope_scale=4.0, n_orig_ctx=None, rope_finetuned=None, ftype=None, path_model=PosixPath('../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct'))
Found vocab files: {'spm': None, 'bpe': None, 'hfft': PosixPath('../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct/tokenizer.json')}
Loading vocab file PosixPath('../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct/tokenizer.json'), type 'hfft'
fname_tokenizer: ../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Vocab info: <HfVocab with 32000 base tokens and 22 added tokens>
Special vocab info: <SpecialVocab with 0 merges, special tokens {'bos': 32013, 'eos': 32021, 'pad': 32014}, add special tokens {'bos': True, 'eos': False}>
Permuting layer 0
Permuting layer 1
Permuting layer 2
...省略部分
Permuting layer 22
Permuting layer 23
lm_head.weight                                   -> output.weight                            | BF16   | [32256, 2048]
model.embed_tokens.weight                        -> token_embd.weight                        | BF16   | [32256, 2048]
model.layers.0.input_layernorm.weight            -> blk.0.attn_norm.weight                   | BF16   | [2048]
model.layers.0.mlp.down_proj.weight              -> blk.0.ffn_down.weight                    | BF16   | [2048, 5504]
model.layers.0.mlp.gate_proj.weight              -> blk.0.ffn_gate.weight                    | BF16   | [5504, 2048]
...
model.layers.18.self_attn.v_proj.weight          -> blk.18.attn_v.weight                     | BF16   | [2048, 2048]
model.layers.19.input_layernorm.weight           -> blk.19.attn_norm.weight                  | BF16   | [2048]
...
model.layers.9.input_layernorm.weight            -> blk.9.attn_norm.weight                   | BF16   | [2048]
model.layers.9.mlp.down_proj.weight              -> blk.9.ffn_down.weight                    | BF16   | [2048, 5504]
model.layers.9.mlp.gate_proj.weight              -> blk.9.ffn_gate.weight                    | BF16   | [5504, 2048]
model.layers.9.mlp.up_proj.weight                -> blk.9.ffn_up.weight                      | BF16   | [5504, 2048]
model.layers.9.post_attention_layernorm.weight   -> blk.9.ffn_norm.weight                    | BF16   | [2048]
model.layers.9.self_attn.k_proj.weight           -> blk.9.attn_k.weight                      | BF16   | [2048, 2048]
model.layers.9.self_attn.o_proj.weight           -> blk.9.attn_output.weight                 | BF16   | [2048, 2048]
model.layers.9.self_attn.q_proj.weight           -> blk.9.attn_q.weight                      | BF16   | [2048, 2048]
model.layers.9.self_attn.v_proj.weight           -> blk.9.attn_v.weight                      | BF16   | [2048, 2048]
model.norm.weight                                -> output_norm.weight                       | BF16   | [2048]
Writing ../DeepSeek-Coder/models/1.3b.gguf, format 1
Traceback (most recent call last):
  File "/home/stlinpeiyang/lpy22/LLM/llama.cpp/convert.py", line 1479, in <module>
    main()
  File "/home/stlinpeiyang/lpy22/LLM/llama.cpp/convert.py", line 1473, in main
    OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
  File "/home/stlinpeiyang/lpy22/LLM/llama.cpp/convert.py", line 1117, in write_all
    check_vocab_size(params, vocab, pad_vocab=pad_vocab)
  File "/home/stlinpeiyang/lpy22/LLM/llama.cpp/convert.py", line 963, in check_vocab_size
    raise Exception(msg)
Exception: Vocab size mismatch (model has 32256, but ../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct has 32022). Add the --pad-vocab option and try again.

3.2.1 添加--pad-vocab

首先,显然提示添加参数,根据提示加上--pad-vocab参数后,成功运行并可以成功量化,但是在测试时,会出现以下错误

terminate called after throwing an instance of 'std::out_of_range'
  what():  _Map_base::at
Aborted (core dumped)

这种情况有相关的issue comment&这个。

llama.cpp的pull request和issue来看,应该是还没处理好。菜鸡只能嗷嗷待哺了
😥。不知道TheBloke大佬是怎么处理的👍。
(表情网站)


3.2.2 修改vocab_size

其次,根据错误的前半段的model has 32256, but ... has 32022,有类似的issue.
根据comment,对vocal_size进行修改。相应地,打开deepseek-coder-1.3b-instruct中的config.json文件,试将"vocab_size": 32256修改为"vocal_size": 32022。再次运行

python convert.py <MODEL_PATH> --outfile <GGUF_PATH>

输出的log如下

Loading model file ../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct/model.safetensors
params = Params(n_vocab=32022, n_embd=2048, n_layer=24, n_ctx=16384, n_ff=5504, n_head=16, n_head_kv=16, n_experts=None, n_experts_used=None, f_norm_eps=1e-06, rope_scaling_type=<RopeScalingType.LINEAR: 'linear'>, f_rope_freq_base=100000, f_rope_scale=4.0, n_orig_ctx=None, rope_finetuned=None, ftype=None, path_model=PosixPath('../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct'))
Found vocab files: {'spm': None, 'bpe': None, 'hfft': PosixPath('../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct/tokenizer.json')}
Loading vocab file PosixPath('../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct/tokenizer.json'), type 'hfft'
fname_tokenizer: ../DeepSeek-Coder/models/deepseek-coder-1.3b-instruct
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Vocab info: <HfVocab with 32000 base tokens and 22 added tokens>
Special vocab info: <SpecialVocab with 0 merges, special tokens {'bos': 32013, 'eos': 32021, 'pad': 32014}, add special tokens {'bos': True, 'eos': False}>
Permuting layer 0
Permuting layer 1
Permuting layer 2
...省略部分
lm_head.weight                                   -> output.weight                            | BF16   | [32256, 2048]
model.embed_tokens.weight                        -> token_embd.weight                        | BF16   | [32256, 2048]
model.layers.0.input_layernorm.weight            -> blk.0.attn_norm.weight                   | BF16   | [2048]
model.layers.0.mlp.down_proj.weight              -> blk.0.ffn_down.weight                    | BF16   | [2048, 5504]
model.layers.0.mlp.gate_proj.weight              -> blk.0.ffn_gate.weight                    | BF16   | [5504, 2048]
model.layers.0.mlp.up_proj.weight                -> blk.0.ffn_up.weight                      | BF16   | [5504, 2048]
model.layers.0.post_attention_layernorm.weight   -> blk.0.ffn_norm.weight                    | BF16   | [2048]
model.layers.0.self_attn.k_proj.weight           -> blk.0.attn_k.weight                      | BF16   | [2048, 2048]
model.layers.0.self_attn.o_proj.weight           -> blk.0.attn_output.weight                 | BF16   | [2048, 2048]
model.layers.0.self_attn.q_proj.weight           -> blk.0.attn_q.weight                      | BF16   | [2048, 2048]
model.layers.0.self_attn.v_proj.weight           -> blk.0.attn_v.weight     
...省略部分
model.layers.9.self_attn.q_proj.weight           -> blk.9.attn_q.weight                      | BF16   | [2048, 2048]
model.layers.9.self_attn.v_proj.weight           -> blk.9.attn_v.weight                      | BF16   | [2048, 2048]
model.norm.weight                                -> output_norm.weight                       | BF16   | [2048]
Writing ../DeepSeek-Coder/models/1.3b.gguf, format 1
Ignoring added_tokens.json since model matches vocab size without it.
gguf: This GGUF file is for Little Endian only
gguf: Setting special token type bos to 32013
gguf: Setting special token type eos to 32021
gguf: Setting special token type pad to 32014
gguf: Setting add_bos_token to True
gguf: Setting add_eos_token to False
gguf: Setting chat_template to {% if not add_generation_prompt is defined %}
{% set add_generation_prompt = false %}
{% endif %}
{%- set ns = namespace(found=false) -%}
{%- for message in messages -%}
    {%- if message['role'] == 'system' -%}
        {%- set ns.found = true -%}
    {%- endif -%}
{%- endfor -%}
{{bos_token}}{%- if not ns.found -%}
{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\n'}}
{%- endif %}
{%- for message in messages %}
    {%- if message['role'] == 'system' %}
{{ message['content'] }}
    {%- else %}
        {%- if message['role'] == 'user' %}
{{'### Instruction:\n' + message['content'] + '\n'}}
        {%- else %}
{{'### Response:\n' + message['content'] + '\n<|EOT|>\n'}}
        {%- endif %}
    {%- endif %}
{%- endfor %}
{% if add_generation_prompt %}
{{'### Response:'}}
{% endif %}
[  1/219] Writing tensor output.weight                          | size  32256 x   2048  | type F16  | T+   0
[  2/219] Writing tensor token_embd.weight                      | size  32256 x   2048  | type F16  | T+   0
...省略部分
[216/219] Writing tensor blk.9.attn_output.weight               | size   2048 x   2048  | type F16  | T+   2
[217/219] Writing tensor blk.9.attn_q.weight                    | size   2048 x   2048  | type F16  | T+   2
[218/219] Writing tensor blk.9.attn_v.weight                    | size   2048 x   2048  | type F16  | T+   2
[219/219] Writing tensor output_norm.weight                     | size   2048           | type F32  | T+   2
Wrote ../DeepSeek-Coder/models/1.3b.gguf

成功生成gguf文件。下一步进行量化

./quantize ${out_model.gguf} ${out_model-q5_0.gguf} q5_0

输出log如下

main: build = 1 (231ae28)
main: built with cc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 for x86_64-linux-gnu
main: quantizing '../DeepSeek-Coder/models/1.3b.gguf' to '../DeepSeek-Coder/models/1.3b-q5_0.gguf' as Q5_0
llama_model_loader: loaded meta data with 24 key-value pairs and 219 tensors from ../DeepSeek-Coder/models/1.3b.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = models
llama_model_loader: - kv   2:                       llama.context_length u32              = 16384
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 2048
llama_model_loader: - kv   4:                          llama.block_count u32              = 24
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 5504
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 16
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 16
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 100000.000000
llama_model_loader: - kv  11:                    llama.rope.scaling.type str              = linear
llama_model_loader: - kv  12:                  llama.rope.scaling.factor f32              = 4.000000
llama_model_loader: - kv  13:                          general.file_type u32              = 1
llama_model_loader: - kv  14:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  15:                      tokenizer.ggml.tokens arr[str,32022]   = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  16:                      tokenizer.ggml.scores arr[f32,32022]   = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv  17:                  tokenizer.ggml.token_type arr[i32,32022]   = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  18:                tokenizer.ggml.bos_token_id u32              = 32013
llama_model_loader: - kv  19:                tokenizer.ggml.eos_token_id u32              = 32021
llama_model_loader: - kv  20:            tokenizer.ggml.padding_token_id u32              = 32014
llama_model_loader: - kv  21:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  22:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  23:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - type  f32:   49 tensors
llama_model_loader: - type  f16:  170 tensors
llama_model_quantize_internal: meta size = 767616 bytes
[   1/ 219]                        output.weight - [ 2048, 32256,     1,     1], type =    f16, quantizing to q6_K .. size =   126.00 MiB ->    51.68 MiB
[   2/ 219]                    token_embd.weight - [ 2048, 32256,     1,     1], type =    f16, quantizing to q5_0 .. size =   126.00 MiB ->    43.31 MiB | hist: 0.040 0.018 0.028 0.043 0.061 0.082 0.101 0.114 0.117 0.109 0.092 0.072 0.052 0.035 0.022 0.016
...
[ 218/ 219]                  blk.9.attn_v.weight - [ 2048,  2048,     1,     1], type =    f16, quantizing to q5_0 .. size =     8.00 MiB ->     2.75 MiB | hist: 0.040 0.017 0.028 0.042 0.060 0.081 0.101 0.116 0.121 0.109 0.091 0.071 0.051 0.034 0.022 0.016
[ 219/ 219]                   output_norm.weight - [ 2048,     1,     1,     1], type =    f32, size =    0.008 MB
llama_model_quantize_internal: model size  =  2568.38 MB
llama_model_quantize_internal: quant size  =   891.50 MB
llama_model_quantize_internal: hist: 0.040 0.017 0.028 0.043 0.061 0.082 0.101 0.114 0.118 0.109 0.092 0.071 0.051 0.035 0.022 0.016

main: quantize time =  9300.54 ms
main:    total time =  9300.54 ms

进行测试

./main -m ../DeepSeek-Coder/models/1.3b-q5_0.gguf  -n 256 -t 18 --repeat_penalty 1.0 --color -i -r "User:" -f ./prompts/chat-with-bob.txt -ngl 20

加载模型失败.

warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored
warning: see main README.md for information on enabling GPU BLAS support
Log start
main: build = 1 (231ae28)
main: built with cc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 for x86_64-linux-gnu
main: seed  = 1710571501
llama_model_loader: loaded meta data with 25 key-value pairs and 219 tensors from ../DeepSeek-Coder/models/1.3b-q5_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = models
llama_model_loader: - kv   2:                       llama.context_length u32              = 16384
llama_model_loader: - kv   3:                     llama.embedding_length u32              = 2048
llama_model_loader: - kv   4:                          llama.block_count u32              = 24
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 5504
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:                 llama.attention.head_count u32              = 16
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32              = 16
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  10:                       llama.rope.freq_base f32              = 100000.000000
llama_model_loader: - kv  11:                    llama.rope.scaling.type str              = linear
llama_model_loader: - kv  12:                  llama.rope.scaling.factor f32              = 4.000000
llama_model_loader: - kv  13:                          general.file_type u32              = 8
llama_model_loader: - kv  14:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  15:                      tokenizer.ggml.tokens arr[str,32022]   = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  16:                      tokenizer.ggml.scores arr[f32,32022]   = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv  17:                  tokenizer.ggml.token_type arr[i32,32022]   = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  18:                tokenizer.ggml.bos_token_id u32              = 32013
llama_model_loader: - kv  19:                tokenizer.ggml.eos_token_id u32              = 32021
llama_model_loader: - kv  20:            tokenizer.ggml.padding_token_id u32              = 32014
llama_model_loader: - kv  21:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  22:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  23:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - kv  24:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   49 tensors
llama_model_loader: - type q5_0:  169 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_vocab: SPM vocabulary, but newline token not found: _Map_base::at! Using special_pad_id instead.llm_load_vocab: mismatch in special tokens definition ( 9/32022 vs 22/32022 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32022
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 16384
llm_load_print_meta: n_embd           = 2048
llm_load_print_meta: n_head           = 16
llm_load_print_meta: n_head_kv        = 16
llm_load_print_meta: n_layer          = 24
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 2048
llm_load_print_meta: n_embd_v_gqa     = 2048
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 5504
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 100000.0
llm_load_print_meta: freq_scale_train = 0.25
llm_load_print_meta: n_yarn_orig_ctx  = 16384
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = ?B
llm_load_print_meta: model ftype      = Q5_0
llm_load_print_meta: model params     = 1.35 B
llm_load_print_meta: model size       = 891.50 MiB (5.55 BPW)
llm_load_print_meta: general.name     = models
llm_load_print_meta: BOS token        = 32013 '<|begin▁of▁sentence|>'
llm_load_print_meta: EOS token        = 32021 '<|EOT|>'
llm_load_print_meta: UNK token        = 0 '!'
llm_load_print_meta: PAD token        = 32014 '<|end▁of▁sentence|>'
llm_load_tensors: ggml ctx size =    0.08 MiB
llama_model_load: error loading model: create_tensor: tensor 'token_embd.weight' has wrong shape; expected  2048, 32022, got  2048, 32256,     1,     1
llama_load_model_from_file: failed to load model
llama_init_from_gpt_params: error: failed to load model '../DeepSeek-Coder/models/1.3b-q5_0.gguf'
main: error: unable to load model

看错误llama_model_load: error loading model: create_tensor: tensor 'token_embd.weight' has wrong shape; expected 2048, 32022, got 2048, 32256, 1, 1应该是跟前面修改的vocab-size有关。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1523560.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

蓝桥杯2023年省A(一波三折的)【买瓜】折半搜索+剪枝+排序

题目&#xff1a;洛谷 P9234 [蓝桥杯 2023 省 A] 买瓜 折半搜索 一开始觉得像dp&#xff0c;试着写了&#xff0c;显然过不了&#xff0c;但我实在觉得搜索也过不了啊&#xff0c;去看题解&#xff0c;发现使用了折半搜索&#xff08;每天都觉得啥都不会捏 折半搜索就是先搜一…

Elasticsearch 主副分片切换过程中对业务写入有影响吗

&#x1f34a;&#x1f349;&#x1f34b; 先说下结论&#xff0c;只要集群中的工作节点过半&#xff0c;有候选的master节点&#xff0c;挂掉的节点中不同时包含索引的主分片和副分片&#xff0c;那么ES是可以做到让业务无感知的进行主副分片切换的。 蓝胖子会先讲解下ES集群写…

Oracle P6 Professional 配置连接数据库总结

前言 P6 Professional作为Oracle P6计划管理系统的重要套件之一&#xff0c;其操作出色&#xff0c;体检佳&#xff0c;是非常多的计划工程师跟踪项目进度计划的辅助工具。自20年前&#xff0c;Professional一直在不断的演变更新&#xff0c;以适应当前的新技术&#xff0c;从…

从零开始搭建游戏服务器 第三节 Protobuf的引入并使用

目录 上一节问题答案公布本节内容Protobuf介绍正文在build.gradle引入protobuf编写proto并生成使用生成的proto来进行数据传输 总结 上一节问题答案公布 上一节我们创建了ConnectActor&#xff0c;并且使用ConnectActorManager和connectId将其管理起来。 并且我们在收到客户端…

掌握C#: 从基础到精通 - 中级实战练习集

文章目录 异常处理尝试-捕获结构 文件 I/O 练习追加而不覆盖处理目录 LINQ 查询练习筛选集合中的对象排序复杂对象 类与对象练习继承与多态性 你是否已经掌握了C#的基础知识&#xff0c;正在寻找更多挑战来提升你的能力&#xff1f;那么&#xff0c;这篇文章就是为你准备的。我…

实锤!北大学者证实富钾盐代替食盐可安全降低高血压风险,发文顶刊JACC

编者 “要注意饮食&#xff0c;减少食盐摄入”这是高血压患者就诊时&#xff0c;医生说的最多的一句话。虽然低盐可以预防高血压&#xff0c;但国人食盐摄入量还是高于世界卫生组织&#xff08;成人每天摄入盐不超过5克&#xff09;的建议。 好在“天无绝人之路”&#xff0c;一…

人脸检测的5种实现方法

众所周知&#xff0c;人脸识别是计算机视觉应用的一个重大领域&#xff0c;在学习人脸识别之前&#xff0c;我们先来简单学习下人脸检测的几种用法。 常见的人脸检测方法大致有5种&#xff0c;Haar、Hog、CNN、SSD、MTCNN&#xff1a; 相关构造检测器的文件&#xff1a;opencv…

Java实现简单的通讯录

每日一言 泪眼问花花不语&#xff0c;乱红飞过秋千去。 —欧阳修- 简单的通讯录实现&#xff0c;跟写Java实现图书管理系统差不多&#xff0c;用到的知识也差不多&#xff0c;就当个小练习&#xff0c;练习一下写Java程序的手感。 Java实现图书管理系统 关于通讯录的代码都写…

P8681 [蓝桥杯 2019 省 AB] 完全二叉树的权值:做题笔记

目录 思路 代码 注意点 题目链接&#xff1a; P8681 [蓝桥杯 2019 省 AB] 完全二叉树的权值 (可跳) 这道题刚看到的时候想着主要就是算出每层2的次方个节点的权值和。 我的思路经过了很多次缝缝补补。创建一个sum数组&#xff0c;下标表示深度&#xff0c;每个元素代表…

Unity游戏项目接广告

Unity游戏项目中接入GoogleAdMob 先看效果图 接入测试横幅广告,代码如下: using System.Collections; using System.Collections.Generic; using UnityEngine; using GoogleMobileAds.Api; using System;public class GoogleAdMobManager : MonoBehaviour {private static …

C语言初学12:强制类型转换

一、强制数据类型转换举例 1.1 double赋值给int #include<stdio.h> int main() {double sum 18, count 5;int mean;mean sum / count;printf("Value of mean : %d\n", mean);} 执行结果&#xff1a; double赋值给int&#xff0c;小数部分会删除&#xff…

存内领域前沿,基于忆阻器的存内计算----浅析忆阻存内计算

目录 一.概念浅析 1.存内计算 2.忆阻器 3.基于忆阻器的存内计算 二.忆阻器的分类 1.磁效应忆阻器 2 .相变效应忆阻器 3 .阻变效应忆阻器 三.基于忆阻器的存内计算原理 1. 利用二值忆阻器的布尔计算 3.1R-R 逻辑运算 3.2V-R 逻辑运算 3.3V-V 逻辑运算 2. 利用模拟…

旋转中心 机械手抓料方式

一、为什么要计算旋转中心&#xff1f; 机器视觉——旋转中心的标定_旋转标定-CSDN博客 在机械手抓料的时候传送带上过来的料可能是各个角度的&#xff0c;不同的位置&#xff0c;这样如果我们没有做好机械手标定的话很难抓取&#xff0c;因此我们要做旋转中和和机械手TCP标定…

Oracle19c静默部署

Oracle19c静默部署文档 下载地址 https://www.oracle.com/database/technologies/oracle-database-software-downloads.html#db_free 一、系统基础配置 1、创建用户和用户组 # 创建oinstall和dba用户组 groupadd oinstall groupadd dba# 创建Oracle用户 useradd -g oinstall…

redis学习-Hash类型相关命令及特殊情况分析

目录 1. hset KEY key1 value1 key2 value2 ... 2. hget KEY key 3. hgetall KEY 4. hmget KEY key1 key2 ... 5. hkeys KEY 6. hvals KEY 7. hdel KEY key1 key2 ... 8. hlen KEY 9. hexists KEY key 10. hincrby KEY key num 11. hsetnx KEY key value Hash的内部…

HDFSDATANODE数据传输详解

本文主要阐述datanode中一个socket连接接收字节流的构成&#xff0c;帮助datanode的接收与处理数据。注意hadoop版本为3.1.1。 写在前面 Datanode本质上也是TCPServer&#xff0c;一般的TCPServer接到客户端请求以后会分配一个线程处理&#xff0c;对于Datanode而言&#xff…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:SideBarContainer)

提供侧边栏可以显示和隐藏的侧边栏容器&#xff0c;通过子组件定义侧边栏和内容区&#xff0c;第一个子组件表示侧边栏&#xff0c;第二个子组件表示内容区。 说明&#xff1a; 该组件从API Version 8开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:TextTimer)

通过文本显示计时信息并控制其计时器状态的组件。 说明&#xff1a; 该组件从API Version 8开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 无 接口 TextTimer(options?: TextTimerOptions) 参数&#xff1a; 参数名参数类型…

数据仓库数据分层详解

数据仓库中的数据分层是一种重要的数据组织方式&#xff0c;其目的是为了在管理数据时能够对数据有一个更加清晰的掌控。以下是数据仓库中的数据分层详解&#xff1a; 原始数据层&#xff08;Raw Data Layer&#xff09;&#xff1a;这是数仓中最底层的层级&#xff0c;用于存…

【老旧小区用电安全谁能管?】安科瑞智慧用电安全管理系统解决方案

行业背景 电气火灾指由电气故障引发的火灾。每年以30%的比例高居各类火灾原因之首。以50%到80%的比例高居重特大火灾之首。已成为业界重点关注的对象并为此进行着孜孜不倦的努力。 国务院安委会也于2017年5月至2020年4月年开展了为期3年的电气火灾综合治理工作。在各界努力的…